Abstract

Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system’s response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Ph.D. dissertation (University of Siegen, 2000).
  2. T. Kahlmann and H. Ingensand, “High-precision investigations of the fast range imaging camera SwissRanger,” Proc. SPIE 6758, 67580J (2007).
    [CrossRef]
  3. M. Lindner and A. Kolb, “Lateral and depth calibration of PMD-distance sensors,” in Advances in Visual Computing, Part II, Vol. 4292 of Lecture Notes in Computer Science (Springer, 2006), pp. 524–533.
    [CrossRef]
  4. C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
    [CrossRef]
  5. H. Rapp, M. Frank, F. A. Hamprecht, and B. Jahne, “A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras,” IJISTA 5, 402–413 (2008).
    [CrossRef]
  6. S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a time-of-flight range camera for intelligent vehicle safety applications,” in Advanced Microsystems for Automotive Applications 2006 (Springer, 2006), pp. 205–214.
    [CrossRef]
  7. A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
    [CrossRef]
  8. A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
    [CrossRef]
  9. B. Büttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel structures,” IEEE Trans. Circuits Syst. I 55, 1512–1525 (2008).
    [CrossRef]
  10. B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
    [CrossRef]
  11. R. Schwarte, “Breakthrough in multichannel laser-radar technology providing thousands of high-sensitive lidar receivers on a chip,” Proc. SPIE 5575, 126–136 (2004).
    [CrossRef]
  12. E. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2006).
    [CrossRef]
  13. A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterization of modulated time-of-flight range image sensors,” Proc. SPIE 7239, 723904 (2009).
    [CrossRef]
  14. A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
    [CrossRef]
  15. A. A. Dorrington, M. J. Cree, D. A. Carnegie, and A. D. Payne, “Selecting signal frequencies for best performance of Fourier-based phase detection,” in Proceedings of Twelfth New Zealand Electronics Conference (Manukau Institute of Technology, 2005), pp. 189–193.
  16. M. Lindner, A. Kolb, and T. Ringbeck, “New insights into the calibration of ToF-sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–5.
  17. A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved linearity using harmonic error rejection in a full-field range imaging system,” Proc. SPIE 6805, 68050D (2008).
    [CrossRef]
  18. A. D. Payne and A. A. Dorrington, “Signal simulation apparatus and method,” patent WO 2009/051499 (23 April 2009), http://www.wipo.int/pctdb/en/wo.jsp?WO=2009051499.
  19. A. C. Davies, “Digital generation of low-frequency sine waves,” IEEE Trans. Instrum. Meas. 18, 97–105 (1969).
    [CrossRef]
  20. J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
    [CrossRef]
  21. Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
    [PubMed]
  22. T. Spirig, M. Marley, and P. Seitz, “The multitap lock-in CCD with offset subtraction,” IEEE Trans. Electron Devices 44, 1643–1647 (1997).
    [CrossRef]

2009 (2)

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterization of modulated time-of-flight range image sensors,” Proc. SPIE 7239, 723904 (2009).
[CrossRef]

2008 (6)

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

M. Lindner, A. Kolb, and T. Ringbeck, “New insights into the calibration of ToF-sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–5.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved linearity using harmonic error rejection in a full-field range imaging system,” Proc. SPIE 6805, 68050D (2008).
[CrossRef]

H. Rapp, M. Frank, F. A. Hamprecht, and B. Jahne, “A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras,” IJISTA 5, 402–413 (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

B. Büttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel structures,” IEEE Trans. Circuits Syst. I 55, 1512–1525 (2008).
[CrossRef]

2007 (2)

A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
[CrossRef]

T. Kahlmann and H. Ingensand, “High-precision investigations of the fast range imaging camera SwissRanger,” Proc. SPIE 6758, 67580J (2007).
[CrossRef]

2006 (3)

M. Lindner and A. Kolb, “Lateral and depth calibration of PMD-distance sensors,” in Advances in Visual Computing, Part II, Vol. 4292 of Lecture Notes in Computer Science (Springer, 2006), pp. 524–533.
[CrossRef]

S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a time-of-flight range camera for intelligent vehicle safety applications,” in Advanced Microsystems for Automotive Applications 2006 (Springer, 2006), pp. 205–214.
[CrossRef]

E. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2006).
[CrossRef]

2005 (1)

A. A. Dorrington, M. J. Cree, D. A. Carnegie, and A. D. Payne, “Selecting signal frequencies for best performance of Fourier-based phase detection,” in Proceedings of Twelfth New Zealand Electronics Conference (Manukau Institute of Technology, 2005), pp. 189–193.

2004 (2)

B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
[CrossRef]

R. Schwarte, “Breakthrough in multichannel laser-radar technology providing thousands of high-sensitive lidar receivers on a chip,” Proc. SPIE 5575, 126–136 (2004).
[CrossRef]

2001 (1)

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

2000 (1)

R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Ph.D. dissertation (University of Siegen, 2000).

1998 (1)

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
[PubMed]

1997 (1)

T. Spirig, M. Marley, and P. Seitz, “The multitap lock-in CCD with offset subtraction,” IEEE Trans. Electron Devices 44, 1643–1647 (1997).
[CrossRef]

1969 (1)

A. C. Davies, “Digital generation of low-frequency sine waves,” IEEE Trans. Instrum. Meas. 18, 97–105 (1969).
[CrossRef]

Acharya, S.

S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a time-of-flight range camera for intelligent vehicle safety applications,” in Advanced Microsystems for Automotive Applications 2006 (Springer, 2006), pp. 205–214.
[CrossRef]

Blanc, N.

B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
[CrossRef]

Büttgen, B.

B. Büttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel structures,” IEEE Trans. Circuits Syst. I 55, 1512–1525 (2008).
[CrossRef]

B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
[CrossRef]

Buxbaum, B.

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
[PubMed]

Carnegie, D. A.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterization of modulated time-of-flight range image sensors,” Proc. SPIE 7239, 723904 (2009).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved linearity using harmonic error rejection in a full-field range imaging system,” Proc. SPIE 6805, 68050D (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, and A. D. Payne, “Selecting signal frequencies for best performance of Fourier-based phase detection,” in Proceedings of Twelfth New Zealand Electronics Conference (Manukau Institute of Technology, 2005), pp. 189–193.

Charbon, E.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

Conroy, R. M.

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
[CrossRef]

Cree, M. J.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterization of modulated time-of-flight range image sensors,” Proc. SPIE 7239, 723904 (2009).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved linearity using harmonic error rejection in a full-field range imaging system,” Proc. SPIE 6805, 68050D (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, and A. D. Payne, “Selecting signal frequencies for best performance of Fourier-based phase detection,” in Proceedings of Twelfth New Zealand Electronics Conference (Manukau Institute of Technology, 2005), pp. 189–193.

Davies, A. C.

A. C. Davies, “Digital generation of low-frequency sine waves,” IEEE Trans. Instrum. Meas. 18, 97–105 (1969).
[CrossRef]

Dedieu, S.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Dorrington, A. A.

A. D. Payne and A. A. Dorrington, “Signal simulation apparatus and method,” patent WO 2009/051499 (23 April 2009), http://www.wipo.int/pctdb/en/wo.jsp?WO=2009051499.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterization of modulated time-of-flight range image sensors,” Proc. SPIE 7239, 723904 (2009).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved linearity using harmonic error rejection in a full-field range imaging system,” Proc. SPIE 6805, 68050D (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, and A. D. Payne, “Selecting signal frequencies for best performance of Fourier-based phase detection,” in Proceedings of Twelfth New Zealand Electronics Conference (Manukau Institute of Technology, 2005), pp. 189–193.

Favi, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

Frank, M.

H. Rapp, M. Frank, F. A. Hamprecht, and B. Jahne, “A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras,” IJISTA 5, 402–413 (2008).
[CrossRef]

Godbaz, J. P.

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

Gray, P. R.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Hamprecht, F. A.

H. Rapp, M. Frank, F. A. Hamprecht, and B. Jahne, “A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras,” IJISTA 5, 402–413 (2008).
[CrossRef]

Heinol, H.

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
[PubMed]

Hsu, S.

S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a time-of-flight range camera for intelligent vehicle safety applications,” in Advanced Microsystems for Automotive Applications 2006 (Springer, 2006), pp. 205–214.
[CrossRef]

Ingensand, H.

T. Kahlmann and H. Ingensand, “High-precision investigations of the fast range imaging camera SwissRanger,” Proc. SPIE 6758, 67580J (2007).
[CrossRef]

Jahne, B.

H. Rapp, M. Frank, F. A. Hamprecht, and B. Jahne, “A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras,” IJISTA 5, 402–413 (2008).
[CrossRef]

Jongenelen, A. P. P.

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

Kahlmann, T.

T. Kahlmann and H. Ingensand, “High-precision investigations of the fast range imaging camera SwissRanger,” Proc. SPIE 6758, 67580J (2007).
[CrossRef]

Kaufmann, R.

B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
[CrossRef]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

Kolb, A.

M. Lindner, A. Kolb, and T. Ringbeck, “New insights into the calibration of ToF-sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–5.

M. Lindner and A. Kolb, “Lateral and depth calibration of PMD-distance sensors,” in Advances in Visual Computing, Part II, Vol. 4292 of Lecture Notes in Computer Science (Springer, 2006), pp. 524–533.
[CrossRef]

Lange, R.

R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Ph.D. dissertation (University of Siegen, 2000).

Lee, C. W.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Lin, L.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Lindner, M.

M. Lindner, A. Kolb, and T. Ringbeck, “New insights into the calibration of ToF-sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–5.

M. Lindner and A. Kolb, “Lateral and depth calibration of PMD-distance sensors,” in Advances in Visual Computing, Part II, Vol. 4292 of Lecture Notes in Computer Science (Springer, 2006), pp. 524–533.
[CrossRef]

Marley, M.

T. Spirig, M. Marley, and P. Seitz, “The multitap lock-in CCD with offset subtraction,” IEEE Trans. Electron Devices 44, 1643–1647 (1997).
[CrossRef]

Monnier, F.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

Narayanaswami, R. S.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

New, R.

S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a time-of-flight range camera for intelligent vehicle safety applications,” in Advanced Microsystems for Automotive Applications 2006 (Springer, 2006), pp. 205–214.
[CrossRef]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

Oggier, T.

B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
[CrossRef]

Otsuka, M.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Payne, A. D.

A. D. Payne and A. A. Dorrington, “Signal simulation apparatus and method,” patent WO 2009/051499 (23 April 2009), http://www.wipo.int/pctdb/en/wo.jsp?WO=2009051499.

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterization of modulated time-of-flight range image sensors,” Proc. SPIE 7239, 723904 (2009).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved linearity using harmonic error rejection in a full-field range imaging system,” Proc. SPIE 6805, 68050D (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, and A. D. Payne, “Selecting signal frequencies for best performance of Fourier-based phase detection,” in Proceedings of Twelfth New Zealand Electronics Conference (Manukau Institute of Technology, 2005), pp. 189–193.

Rafii, A.

S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a time-of-flight range camera for intelligent vehicle safety applications,” in Advanced Microsystems for Automotive Applications 2006 (Springer, 2006), pp. 205–214.
[CrossRef]

Rapp, H.

H. Rapp, M. Frank, F. A. Hamprecht, and B. Jahne, “A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras,” IJISTA 5, 402–413 (2008).
[CrossRef]

Ringbeck, T.

M. Lindner, A. Kolb, and T. Ringbeck, “New insights into the calibration of ToF-sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–5.

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
[PubMed]

Rudell, J. C.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Schubert, E.

E. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2006).
[CrossRef]

Schwarte, R.

R. Schwarte, “Breakthrough in multichannel laser-radar technology providing thousands of high-sensitive lidar receivers on a chip,” Proc. SPIE 5575, 126–136 (2004).
[CrossRef]

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
[PubMed]

Seitz, P.

B. Büttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel structures,” IEEE Trans. Circuits Syst. I 55, 1512–1525 (2008).
[CrossRef]

B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
[CrossRef]

T. Spirig, M. Marley, and P. Seitz, “The multitap lock-in CCD with offset subtraction,” IEEE Trans. Electron Devices 44, 1643–1647 (1997).
[CrossRef]

Spirig, T.

T. Spirig, M. Marley, and P. Seitz, “The multitap lock-in CCD with offset subtraction,” IEEE Trans. Electron Devices 44, 1643–1647 (1997).
[CrossRef]

Tee, L.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Tsai, K. C.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Weldon, J. A.

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

Xu, Z.

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
[PubMed]

IEEE J. Solid-State Circuits (2)

C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, “Single-photon synchronous detection,” IEEE J. Solid-State Circuits 44, 1977–1989 (2009).
[CrossRef]

J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee, and P. R. Gray, “A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers,” IEEE J. Solid-State Circuits 36, 2003–2015 (2001).
[CrossRef]

IEEE Sens. J. (1)

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterizing an image intensifier in a full-field range imaging system,” IEEE Sens. J. 8, 1763–1770 (2008).
[CrossRef]

IEEE Trans. Circuits Syst. I (1)

B. Büttgen and P. Seitz, “Robust optical time-of-flight range imaging based on smart pixel structures,” IEEE Trans. Circuits Syst. I 55, 1512–1525 (2008).
[CrossRef]

IEEE Trans. Electron Devices (1)

T. Spirig, M. Marley, and P. Seitz, “The multitap lock-in CCD with offset subtraction,” IEEE Trans. Electron Devices 44, 1643–1647 (1997).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. C. Davies, “Digital generation of low-frequency sine waves,” IEEE Trans. Instrum. Meas. 18, 97–105 (1969).
[CrossRef]

IJISTA (1)

H. Rapp, M. Frank, F. A. Hamprecht, and B. Jahne, “A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras,” IJISTA 5, 402–413 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

A. A. Dorrington, M. J. Cree, A. D. Payne, R. M. Conroy, and D. A. Carnegie, “Achieving sub-millimetre precision with a solid-state full-field heterodyning range imaging camera,” Meas. Sci. Technol. 18, 2809–2816 (2007).
[CrossRef]

Proc. SPIE (6)

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Characterization of modulated time-of-flight range image sensors,” Proc. SPIE 7239, 723904 (2009).
[CrossRef]

A. A. Dorrington, M. J. Cree, D. A. Carnegie, A. D. Payne, R. M. Conroy, J. P. Godbaz, and A. P. P. Jongenelen, “Video-rate or high-precision: a flexible range imaging camera,” Proc. SPIE 6813, 681307 (2008).
[CrossRef]

A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, “Improved linearity using harmonic error rejection in a full-field range imaging system,” Proc. SPIE 6805, 68050D (2008).
[CrossRef]

T. Kahlmann and H. Ingensand, “High-precision investigations of the fast range imaging camera SwissRanger,” Proc. SPIE 6758, 67580J (2007).
[CrossRef]

B. Büttgen, T. Oggier, R. Kaufmann, P. Seitz, and N. Blanc, “Demonstration of a novel drift field pixel structure for the demodulation of modulated light waves with application in three-dimensional image capture,” Proc. SPIE 5302, 9–20 (2004).
[CrossRef]

R. Schwarte, “Breakthrough in multichannel laser-radar technology providing thousands of high-sensitive lidar receivers on a chip,” Proc. SPIE 5575, 126–136 (2004).
[CrossRef]

Other (8)

E. Schubert, Light-Emitting Diodes (Cambridge U. Press, 2006).
[CrossRef]

M. Lindner and A. Kolb, “Lateral and depth calibration of PMD-distance sensors,” in Advances in Visual Computing, Part II, Vol. 4292 of Lecture Notes in Computer Science (Springer, 2006), pp. 524–533.
[CrossRef]

S. Hsu, S. Acharya, A. Rafii, and R. New, “Performance of a time-of-flight range camera for intelligent vehicle safety applications,” in Advanced Microsystems for Automotive Applications 2006 (Springer, 2006), pp. 205–214.
[CrossRef]

A. D. Payne and A. A. Dorrington, “Signal simulation apparatus and method,” patent WO 2009/051499 (23 April 2009), http://www.wipo.int/pctdb/en/wo.jsp?WO=2009051499.

A. A. Dorrington, M. J. Cree, D. A. Carnegie, and A. D. Payne, “Selecting signal frequencies for best performance of Fourier-based phase detection,” in Proceedings of Twelfth New Zealand Electronics Conference (Manukau Institute of Technology, 2005), pp. 189–193.

M. Lindner, A. Kolb, and T. Ringbeck, “New insights into the calibration of ToF-sensors,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–5.

R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Ph.D. dissertation (University of Siegen, 2000).

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart pixel–photonic mixer device (PMD),” in Proceedings of M2VIP ’98—International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Image sensor synchronously samples the reflected illumination, performing a correlation between the amplitude modulated illumination and the amplitude modulated sensor gain. Four correlation measurements are collected to allow the signal amplitude A, phase φ, and offset B to be determined.

Fig. 2
Fig. 2

Normalized spectrum of a square wave generated using an ideal illumination source. The odd-order harmonics are aliased onto the fundamental component during sampling when N = 4 if the image sensor is also modulated with a square wave.

Fig. 3
Fig. 3

Above, simulation of the measured phase showing a systematic “wobble” due to aliased harmonics from square wave amplitude modulated illumination and sensor waveforms. Below, the resultant phase error.

Fig. 4
Fig. 4

To cancel the third and fifth harmonics, the sensor integration period T is divided into three segments with a ratio of 1 / 2 : 1 : 1 / 2 . The illumination amplitude modulated signal is phase shifted by 45 ° , 0 ° , and + 45 ° in each segment, respectively.

Fig. 5
Fig. 5

Phase vector diagram of harmonic cancellation using 45 ° phase steps. Summation of the third- and fifth-order harmonic components during the image sensor integration period results in complete cancellation due to destructive interference.

Fig. 6
Fig. 6

Spectra of a square wave amplitude modulated illumination signal. Harmonic cancellation has been applied using phase steps of 45 ° , 0 ° , 45 ° , and an integration ratio of 1 / 2 : 1 : 1 / 2 to remove the third- and fifth (and 11th, 13th, 19th, 21st…)-order harmonics from the waveform.

Fig. 7
Fig. 7

Simulation of the systematic phase error after the third- and fifth-order harmonics have been canceled from the square wave amplitude modulated illumination waveform. The error is reduced from 147 to 16   mrad peak to peak compared to standard operation (Fig. 3).

Fig. 8
Fig. 8

Implementation of the range imaging system.

Fig. 9
Fig. 9

Simulated and measured linearity error for the range imaging system under (a) standard operation with square wave modulation, (b) with harmonic cancellation of the third- and fifth-order harmonics, and (c) with harmonic cancellation of all odd harmonics (up to the 117th order). Each measured experimental capture was repeated five times (black dots), with the mean value plotted as a solid line.

Fig. 10
Fig. 10

Comparison between the measured demodulation contrast for standard operation and the harmonic cancellation technique applied with 3 ° phase step resolution. Each measurement was repeated five times (black dots), with the mean value plotted as a solid curve.

Fig. 11
Fig. 11

Measured precision ( 1 σ standard deviation) versus measured offset B sig for approximately 200 regions within a range image. The error is higher for the harmonic cancellation technique compared to standard operation. The offset values are measured in ADC counts from the camera.

Fig. 12
Fig. 12

Reducing the duty cycle of the amplitude modulated illumination waveform results in an increase of the modulation contrast. A typical duty cycle of 50% contributes a modulation contrast of 0.64, while a value of 0.90 can be achieved by reducing the duty cycle to 25%.

Fig. 13
Fig. 13

Measured correlation function for different laser duty cycles. The shortest duty cycle produces the largest demodulation contrast (largest peak-to-peak amplitude). All odd-order harmonics were canceled during sampling, so the waveform appears approximately sinusoidal regardless of the laser duty cycle used.

Tables (1)

Tables Icon

Table 1 Demodulation Contrast Values for Various Image Sensor and Illumination Amplitude Modulation Waveforms, for Standard Operation, and Operation with Harmonic Cancellation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A = 2 N [ Σ I j cos ( j 2 π N ) ] 2 + [ Σ I j sin ( j 2 π N ) ] 2 ,
B = Σ I j N ,
φ = a tan 2 ( Σ I j cos ( j 2 π N ) , Σ I j sin ( j 2 π N ) ) .
r = φ c 4 π f ,
α l = sin l π n + 1 ,
σ R = c 4 π f 2 · B c demod B sig ,
Δ A h , n = | l = 1 n α l exp [ i l h π / ( n + 1 ) ] | l = 1 n α l ,

Metrics