Abstract

The possibility and the efficiency of using a single diffractive lens to achromatize and apochromatize micro-objectives with plastic lenses are shown. In addition, recommendations are given on assembling the starting configurations of the objectives and calculating the design parameters required for subsequent optimization. It is also shown that achievable optical performance of achromatic and apochromatic micro-objectives with plastic lenses satisfy the qualifying standards for cell-phone objectives and closed-circuit television (CCTV) cameras.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Stone and N. George, “Hybrid diffractive-refractive lenses and achromats,” Appl. Opt. 27, 2960–2971 (1988).
    [CrossRef] [PubMed]
  2. M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 115 (1989).
  3. J. L. Rouke, M. K. Crawford, D. J. Fischer, C. J. Harkrider, D. T. Moore, and T. H. Tomkinson, “Design of three-element night-vision goggle objectives,” Appl. Opt. 37, 622–626 (1998).
    [CrossRef]
  4. H. Hua, Y. Ha, and J. P. Roland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, 97–107 (2003).
    [CrossRef] [PubMed]
  5. http://www.dpreview.com/news/0009/00090604canon_400do.asp.
  6. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141(2006).
    [CrossRef] [PubMed]
  7. D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15, 1167–1174 (2007).
    [CrossRef] [PubMed]
  8. http://www.gsoptics.com.
  9. http://www.ukaoptics.com/ccd.html.
  10. G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Diffraction elements in the optical systems of modern optoelectronics,” J. Opt. Technol. 76, 395–398(2009).
    [CrossRef]
  11. www.zemax.com.
  12. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005), Section 8.8.2, p. 491.
  13. G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems(SPIE Press, 1997).
  14. G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
    [CrossRef]

2009 (2)

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Diffraction elements in the optical systems of modern optoelectronics,” J. Opt. Technol. 76, 395–398(2009).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005), Section 8.8.2, p. 491.

2003 (1)

1998 (1)

1997 (1)

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems(SPIE Press, 1997).

1989 (1)

M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 115 (1989).

1988 (1)

Bezus, E. A.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Diffraction elements in the optical systems of modern optoelectronics,” J. Opt. Technol. 76, 395–398(2009).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Bobrov, S. T.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems(SPIE Press, 1997).

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005), Section 8.8.2, p. 491.

Bykov, D. A.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Diffraction elements in the optical systems of modern optoelectronics,” J. Opt. Technol. 76, 395–398(2009).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Crawford, M. K.

Ezhov, E. G.

Fischer, D. J.

Gan, M. A.

M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 115 (1989).

George, N.

Greisukh, G. I.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Diffraction elements in the optical systems of modern optoelectronics,” J. Opt. Technol. 76, 395–398(2009).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141(2006).
[CrossRef] [PubMed]

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems(SPIE Press, 1997).

Ha, Y.

Harkrider, C. J.

Hua, H.

Moore, D. T.

Radtke, D.

Roland, J. P.

Rouke, J. L.

Stepanov, S. A.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Diffraction elements in the optical systems of modern optoelectronics,” J. Opt. Technol. 76, 395–398(2009).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, “Diffractive-refractive hybrid corrector for achro- and apochromatic corrections of optical systems,” Appl. Opt. 45, 6137–6141(2006).
[CrossRef] [PubMed]

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems(SPIE Press, 1997).

Stone, T.

Tomkinson, T. H.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005), Section 8.8.2, p. 491.

Zeitner, U. D.

Appl. Opt. (4)

J. Opt. Technol. (1)

Opt. Express (1)

Opt. Spectrosc. (1)

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Proc. SPIE (1)

M. A. Gan, “Optical systems with holographic and kinoform elements,” Proc. SPIE 1136, 115 (1989).

Other (6)

http://www.dpreview.com/news/0009/00090604canon_400do.asp.

http://www.gsoptics.com.

http://www.ukaoptics.com/ccd.html.

www.zemax.com.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005), Section 8.8.2, p. 491.

G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems(SPIE Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Four-lens achromat: 1, aperture stop; 2, diffractive lens.

Fig. 2
Fig. 2

Five-lens achromat: 1, aperture stop; 2, diffractive lens.

Fig. 3
Fig. 3

Chromatic focal shift for five-lens achromat.

Fig. 4
Fig. 4

Field aberration plots for five-lens achromat (a) astigmatic field curvature: 1, at λ = λ F ; 2, at λ = λ d ; and 3, at λ = λ C (solid curves, sagittal, and dashed curves, tangential shifts). (b) Distortion at λ = λ d .

Fig. 5
Fig. 5

Distribution of the wavefront aberration within the exit pupil for five-lens achromat: solid curves, at λ = λ F ; short-dashed curves, at λ = λ d ; long-dashed curves, at λ = λ C .

Fig. 6
Fig. 6

Polychromatic diffraction MTF for five-lens achromat: 1, at 0 ° ; 2, at 15 ° half-field angle; and 3, at 30 ° half-field angle (short-dashed curves, sagittal, and long-dashed curves, tangential shifts).

Fig. 7
Fig. 7

Five-lens apochromat: 1, aperture stop; 2, diffractive lens.

Fig. 8
Fig. 8

Eight-lens apochromat: 1, aperture stop; 2, diffractive lens.

Fig. 9
Fig. 9

Chromatic focal shift for eight-lens apochromat.

Fig. 10
Fig. 10

Field aberration plots for eight-lens apochromat (a) astigmatic field curvature: 1, at λ = λ min ; 2, at λ = λ d ; and 3, at λ = λ max (solid curves, sagittal, and short-dashed curves, tangential shifts); (b) distortion at λ = λ d .

Fig. 11
Fig. 11

Distribution of the wavefront aberration within the exit pupil for eight-lens apochromat: solid curves, at λ = λ min ; short-dashed curves, at λ = λ d ; long-dashed curves, at λ = λ max .

Fig. 12
Fig. 12

Polychromatic diffraction MTF for eight-lens apochromat: 1, at 0 ° ; 2, at 15 ° half-field angle; and 3, at 30 ° half-field angle (short-dashed curves, sagittal, and long-dashed curves, tangential shifts).

Tables (3)

Tables Icon

Table 1 Lens Listing for Four-Lens Achromat a

Tables Icon

Table 2 Lens Listing for Five-Lens Achromat a

Tables Icon

Table 3 Lens Listing for Eight-Lens Apochromat a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z = c ρ 2 1 + 1 c 2 ρ 2 + i = 2 α i ρ 2 i ,
Ω ( ρ ) = 1 2 π m d ψ d ρ .
ψ = m j = 1 A j ρ 2 j ,
Φ = A 1 λ m / π .
Δ f = | f ( λ ) max f ( λ ) min | 16 λ d K 2 ,
| R | 2.5 f .

Metrics