Abstract

The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70keV energy range. The detector had 20μm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer’s Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95μm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Seely, G. E. Holland, L. T. Hudson, and A. Henins, “Modulation transfer functions of photo-stimulable phosphor image plates and scanners,” Appl. Opt. 47, 5753–5761 (2008).
    [CrossRef]
  2. L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
    [CrossRef] [PubMed]
  3. B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
    [CrossRef]
  4. N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.
  5. M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
    [CrossRef]
  6. J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhanced x-ray resolving power achieved behind the focal circle of Cauchois spectrometers,” Appl. Opt. 47, 2767–2778(2008).
    [CrossRef] [PubMed]
  7. J. B. Krause, “Atomic radiative and radiationless yields for K and L shells,” J. Phys. Chem. Ref. Data 8, 307–327(1979).
    [CrossRef]
  8. J. Scofield, “Exchange corrections of K x-ray emission rates,” Phys. Rev. A 9, 1041–1049 (1974).
    [CrossRef]
  9. R. Deslattes, E. Kessler, P. Indelicato, and E. Lindroth, “X-ray wavelengths,” in International Tables for Crystallography, Vol. C. International Union of Crystallography, A.J. C.Wilson and E.Prince, eds. (Kluwer Academic, 1999), p. 206.
  10. G. P. Williams, “X-ray properties of the elements,” Section 1 in X-Ray Data Booklet, xdb.lbl.gov.
  11. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, 1989).

2010

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

2008

2004

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

1999

R. Deslattes, E. Kessler, P. Indelicato, and E. Lindroth, “X-ray wavelengths,” in International Tables for Crystallography, Vol. C. International Union of Crystallography, A.J. C.Wilson and E.Prince, eds. (Kluwer Academic, 1999), p. 206.

1996

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
[CrossRef] [PubMed]

1989

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, 1989).

1979

J. B. Krause, “Atomic radiative and radiationless yields for K and L shells,” J. Phys. Chem. Ref. Data 8, 307–327(1979).
[CrossRef]

1974

J. Scofield, “Exchange corrections of K x-ray emission rates,” Phys. Rev. A 9, 1041–1049 (1974).
[CrossRef]

Apruzese, J. P.

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Boyer, C. N.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Carroll, J. J.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

Chandler, C. T.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
[CrossRef] [PubMed]

Commisso, R. J.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Cooperstein, G.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Deslattes, R.

R. Deslattes, E. Kessler, P. Indelicato, and E. Lindroth, “X-ray wavelengths,” in International Tables for Crystallography, Vol. C. International Union of Crystallography, A.J. C.Wilson and E.Prince, eds. (Kluwer Academic, 1999), p. 206.

Deslattes, R. D.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, 1989).

Henins, A.

Hinshelwood, D. D.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Holland, G. E.

Hudson, L. T.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

J. F. Seely, G. E. Holland, L. T. Hudson, and A. Henins, “Modulation transfer functions of photo-stimulable phosphor image plates and scanners,” Appl. Opt. 47, 5753–5761 (2008).
[CrossRef]

J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhanced x-ray resolving power achieved behind the focal circle of Cauchois spectrometers,” Appl. Opt. 47, 2767–2778(2008).
[CrossRef] [PubMed]

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
[CrossRef] [PubMed]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Indelicato, P.

R. Deslattes, E. Kessler, P. Indelicato, and E. Lindroth, “X-ray wavelengths,” in International Tables for Crystallography, Vol. C. International Union of Crystallography, A.J. C.Wilson and E.Prince, eds. (Kluwer Academic, 1999), p. 206.

Kessler, E.

R. Deslattes, E. Kessler, P. Indelicato, and E. Lindroth, “X-ray wavelengths,” in International Tables for Crystallography, Vol. C. International Union of Crystallography, A.J. C.Wilson and E.Prince, eds. (Kluwer Academic, 1999), p. 206.

Kessler, E. G.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
[CrossRef] [PubMed]

Krause, J. B.

J. B. Krause, “Atomic radiative and radiationless yields for K and L shells,” J. Phys. Chem. Ref. Data 8, 307–327(1979).
[CrossRef]

Lindroth, E.

R. Deslattes, E. Kessler, P. Indelicato, and E. Lindroth, “X-ray wavelengths,” in International Tables for Crystallography, Vol. C. International Union of Crystallography, A.J. C.Wilson and E.Prince, eds. (Kluwer Academic, 1999), p. 206.

Litz, M. S.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

Merkel, G.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

Mosher, D.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Ottinger, P. F.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Pereira, N. R.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Ponce, D. M.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, 1989).

Schumer, J. W.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Schweppe, J. E.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
[CrossRef] [PubMed]

Scofield, J.

J. Scofield, “Exchange corrections of K x-ray emission rates,” Phys. Rev. A 9, 1041–1049 (1974).
[CrossRef]

Seely, J. F.

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

J. F. Seely, G. E. Holland, L. T. Hudson, and A. Henins, “Modulation transfer functions of photo-stimulable phosphor image plates and scanners,” Appl. Opt. 47, 5753–5761 (2008).
[CrossRef]

J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhanced x-ray resolving power achieved behind the focal circle of Cauchois spectrometers,” Appl. Opt. 47, 2767–2778(2008).
[CrossRef] [PubMed]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Stephanakis, S. J.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Strasburg, S. B.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Swanekamp, S. B.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Szabo, C. I.

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, 1989).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, 1989).

Weber, B. V.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Williams, G. P.

G. P. Williams, “X-ray properties of the elements,” Section 1 in X-Ray Data Booklet, xdb.lbl.gov.

Young, F. C.

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

Appl. Opt.

J. Phys. Chem. Ref. Data

J. B. Krause, “Atomic radiative and radiationless yields for K and L shells,” J. Phys. Chem. Ref. Data 8, 307–327(1979).
[CrossRef]

Med. Phys.

L. T. Hudson, R. D. Deslattes, A. Henins, C. T. Chandler, E. G. Kessler, and J. E. Schweppe, “A curved crystal spectrometer for energy calibration and spectral characterization of mammographic x-ray sources,” Med. Phys. 23, 1659–1670(1996).
[CrossRef] [PubMed]

Phys. Plasmas

B. V. Weber, R. J. Commisso, G. Cooperstein, D. D. Hinshelwood, D. Mosher, P. F. Ottinger, D. M. Ponce, J. W. Schumer, S. J. Stephanakis, S. B. Strasburg, S. B. Swanekamp, and F. C. Young, “Ultra-high electron beam power and energy densities using a plasma-filled rod-pinch diode,” Phys. Plasmas 11, 2916–2927 (2004).
[CrossRef]

M. S. Litz, G. Merkel, N. R. Pereira, C. N. Boyer, G. E. Holland, J. W. Schumer, J. F. Seely, L. T. Hudson, and J. J. Carroll, “Anomalous fluorescence line intensity in megavoltage bremsstrahlung,” Phys. Plasmas 17, 043302 (2010).
[CrossRef]

Phys. Rev. A

J. Scofield, “Exchange corrections of K x-ray emission rates,” Phys. Rev. A 9, 1041–1049 (1974).
[CrossRef]

Rev. Sci. Instr.

N. R. Pereira, B. V. Weber, J. P. Apruzese, D. Mosher, J. W. Schumer, J. F. Seely, C. I. Szabo, C. N. Boyer, S. J. Stephanakis, and L. T. Hudson, “K-line spectra of warm, dense plasmas produced with intense pulsed electron beams,” Rev. Sci. Instr. (to be published). A preprint is available online at http://spectroscopy.nrl.navy.mil/spectroscopy_website_003.htm.

Other

R. Deslattes, E. Kessler, P. Indelicato, and E. Lindroth, “X-ray wavelengths,” in International Tables for Crystallography, Vol. C. International Union of Crystallography, A.J. C.Wilson and E.Prince, eds. (Kluwer Academic, 1999), p. 206.

G. P. Williams, “X-ray properties of the elements,” Section 1 in X-Ray Data Booklet, xdb.lbl.gov.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge U. Press, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup of the spectrometer and the detectors (not to scale).

Fig. 2
Fig. 2

Simulated x-ray spectrum calculated by convolving Lorentzian profiles having 50 eV FWHM with the transitions listed in Table 1. The vertical lines are the transition energies.

Fig. 3
Fig. 3

(a) Spectral image recorded by the CCD detector from a single discharge of the Gamble II x-ray generator, where the coordinates are x and y. (b) Fourier transform of the x-ray spectral image, where the coordinates are spatial frequency k x and k y . The central horizontal row ( k y = 0 ) is indicated and contains the spectral lines, which are practically homogeneous in the vertical direction of the spectral image. (c) Spectral image with the background removed by Fourier analysis, where the coordinates are x and y as in (a).

Fig. 4
Fig. 4

Curve is the single row from the spectral image with the background removed by Fourier analysis. The dots are a single row from the spectral image recorded by the CCD and without background removal.

Fig. 5
Fig. 5

Data points are the experimental spectra with background removed, and the curves are (a) two Lorentzians fitted to the K α 1 and K α 2 lines and (b) three Lorentzians fitted to the K β 3 , K β 1 , and K β 2 lines. The FWHM pixel values of the Lorentzians are indicated, and the vertical lines are the theoretical energies.

Fig. 6
Fig. 6

Data points are the Fourier transform of the K α 1 line, and the two curves are fits to the low-frequency data points and represent the exponential FT of a Lorentzian.

Fig. 7
Fig. 7

Data points are the experimental spectrum covering the K β 3 , K β 1 , and K β 2 features with background removed. (a) Curve is the spectrum after removal of half the width of the Lorentzian LSF by Fourier analysis. (b) Curves are the fits of four Lorentzians to the spectrum. The vertical lines are the theoretical energies.

Tables (1)

Tables Icon

Table 1 Tungsten Characteristic K Transitions, Line Widths, and Relative Intensities

Metrics