Abstract

A challenge in the detection of explosives is the differentiation between explosives and contaminants. Synthetic musk-containing perfumes can cause false alarms, as these perfumes are nitroaromatic compounds, which can be mistaken for trinitro toluene (TNT) by some detectors. We present a detection principle based on surface-enhanced Raman scattering (SERS). A stream of the airborne compounds is focused and resublimated on a cooled nanostructured gold surface. We recorded high-resolution SERS spectra of TNT, musk xylene, and musk ketone. The nitroaromatic compounds can be identified unambiguously by their SERS spectra. Even the dominant bands containing nitro-group scissoring and symmetric stretching modes are significantly shifted by the difference in molecular structure.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Oxley, “What to detect?,” in Trace Chemical Sensing of Explosives, R.L.Woodfin, ed. (Wiley, 2007).
  2. A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
    [CrossRef]
  3. I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
    [CrossRef]
  4. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  5. M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  6. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
    [CrossRef] [PubMed]
  7. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14, 847–857(2006).
    [CrossRef] [PubMed]
  8. H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).
  9. J. J. P. Stewart, S. R. Bosco, and W. R. Carper, “Vibrational spectra of 2,4,6-trinitrotoluene and its isotopically substituted analogues,” Spectrochim. Acta A 42, 13–21 (1986).
    [CrossRef]
  10. J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
    [CrossRef]
  11. P. Gao and M. J. Weaver, “Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes,” J. Phys. Chem. 89, 5040–5046 (1985).
    [CrossRef]
  12. J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
    [CrossRef]
  13. National Research Council of the National Academies, Existing and Potential Standoff Explosives Detection Techniques (The National Academy Press, 2004).

2008 (1)

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

2007 (2)

J. C. Oxley, “What to detect?,” in Trace Chemical Sensing of Explosives, R.L.Woodfin, ed. (Wiley, 2007).

J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
[CrossRef]

2006 (1)

2004 (1)

National Research Council of the National Academies, Existing and Potential Standoff Explosives Detection Techniques (The National Academy Press, 2004).

2003 (2)

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
[CrossRef] [PubMed]

J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
[CrossRef]

1995 (1)

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
[CrossRef]

1986 (1)

J. J. P. Stewart, S. R. Bosco, and W. R. Carper, “Vibrational spectra of 2,4,6-trinitrotoluene and its isotopically substituted analogues,” Spectrochim. Acta A 42, 13–21 (1986).
[CrossRef]

1985 (2)

P. Gao and M. J. Weaver, “Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes,” J. Phys. Chem. 89, 5040–5046 (1985).
[CrossRef]

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Alizadeh, E.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Batchelder, D. N.

J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
[CrossRef]

Baumberg, J. J.

Beushausen, V.

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

Bosco, S. R.

J. J. P. Stewart, S. R. Bosco, and W. R. Carper, “Vibrational spectra of 2,4,6-trinitrotoluene and its isotopically substituted analogues,” Spectrochim. Acta A 42, 13–21 (1986).
[CrossRef]

Carper, W. R.

J. J. P. Stewart, S. R. Bosco, and W. R. Carper, “Vibrational spectra of 2,4,6-trinitrotoluene and its isotopically substituted analogues,” Spectrochim. Acta A 42, 13–21 (1986).
[CrossRef]

Castillo-Chará, J.

J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
[CrossRef]

Castro, M. E.

J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
[CrossRef]

Chaffin, N. C.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
[CrossRef]

Charlton, M. D. B.

Christou, K.

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

Clarkson, J.

J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
[CrossRef]

Coats, A. M.

J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
[CrossRef]

Daniel, N. W.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
[CrossRef]

Denifl, S.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Ferreira da Silva, F.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Gao, P.

P. Gao and M. J. Weaver, “Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes,” J. Phys. Chem. 89, 5040–5046 (1985).
[CrossRef]

Griffiths, P. R.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
[CrossRef]

Gundrum, L.

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Hernández-Rivera, S. P.

J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
[CrossRef]

Lewis, I. R.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
[CrossRef]

Lieber, C. A.

Limao-Vieira, P.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Mahadevan-Jansen, A.

Mahnkopf, S.

Manrique-Bastidas, C.

J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
[CrossRef]

Märk, T. D.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Mauracher, A.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Mina, N.

J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Netti, C. M.

Niederkrüger, M.

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

Oxley, J. C.

J. C. Oxley, “What to detect?,” in Trace Chemical Sensing of Explosives, R.L.Woodfin, ed. (Wiley, 2007).

Perney, N. M. B.

Probst, M.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Salb, C.

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

Scheier, P.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Smith, D. A.

J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
[CrossRef]

Smith, W. E.

J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
[CrossRef]

Stewart, J. J. P.

J. J. P. Stewart, S. R. Bosco, and W. R. Carper, “Vibrational spectra of 2,4,6-trinitrotoluene and its isotopically substituted analogues,” Spectrochim. Acta A 42, 13–21 (1986).
[CrossRef]

Sulzer, P.

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

Tungol, M. W.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
[CrossRef]

Viöl, W.

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

Wackerbarth, H.

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

Weaver, M. J.

P. Gao and M. J. Weaver, “Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes,” J. Phys. Chem. 89, 5040–5046 (1985).
[CrossRef]

Zoorob, M. E.

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Int. J. Mass Spectrom. (1)

A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, and P. Scheier, “Electron attachment studies to musk ketone and high mass resolution anionic isobaric fragment detection,” Int. J. Mass Spectrom. 277, 123–129 (2008).
[CrossRef]

J. Mol. Struct. (1)

J. Clarkson, W. E. Smith, D. N. Batchelder, D. A. Smith, and A. M. Coats, “A theoretical study of the structure and vibrations of 2,4,6-trinitrotolune,” J. Mol. Struct. 648, 203–214(2003).
[CrossRef]

J. Phys. Chem. (1)

P. Gao and M. J. Weaver, “Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: benzene and monosubstituted benzenes adsorbed at gold electrodes,” J. Phys. Chem. 89, 5040–5046 (1985).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

J. Castillo-Chará, C. Manrique-Bastidas, N. Mina, M. E. Castro, and S. P. Hernández-Rivera, “Ab initio calculation of Raman vibrational signatures of 2,4-dinitrotoluene, 2,6-dinitrotoluene and 2,4,6-trinitrotoluene,” Proc. SPIE 6756, 67560G (2007).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Spectrochim. Acta A (2)

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector,” Spectrochim. Acta A 51, 1985–2000 (1995).
[CrossRef]

J. J. P. Stewart, S. R. Bosco, and W. R. Carper, “Vibrational spectra of 2,4,6-trinitrotoluene and its isotopically substituted analogues,” Spectrochim. Acta A 42, 13–21 (1986).
[CrossRef]

Other (3)

J. C. Oxley, “What to detect?,” in Trace Chemical Sensing of Explosives, R.L.Woodfin, ed. (Wiley, 2007).

H. Wackerbarth, C. Salb, L. Gundrum, M. Niederkrüger, K. Christou, V. Beushausen, and W. Viöl, “Detection of explosives based on surface enhanced Raman spectroscopy,” Appl. Opt. (to be published).

National Research Council of the National Academies, Existing and Potential Standoff Explosives Detection Techniques (The National Academy Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the principle for the detection of explosives.

Fig. 2
Fig. 2

Chemical structures of (a) TNT, (b) musk xylene, and (c) musk ketone.

Fig. 3
Fig. 3

Raman spectra of musk ketone (top) and musk xylene (bottom); excitation wavelength 785 nm .

Fig. 4
Fig. 4

SERS spectrum of TNT dropped on the nanostructured gold surface; excitation wavelength 785 nm .

Fig. 5
Fig. 5

SERS spectra of musk ketone (top), musk xylene (middle), and TNT (bottom) resublimated from the gas phase at a nanostructured gold surface; excitation wavelength 785 nm .

Tables (2)

Tables Icon

Table 1 Assignments of Measured Raman and SERS Shifts

Tables Icon

Table 2 Comparison of the SERS Bands of TNT, Musk Xylene, and Musk Ketone

Metrics