Abstract

In this study we present a device based on surface-enhanced Raman scattering (SERS) for the detection of airborne explosives. The explosives are resublimated on a cooled nanostructured gold substrate. The explosives trinitrotoluene (TNT) and triacetone triperoxide (TATP) are used. The SERS spectrum of the explosives is analyzed. Thus, TNT is deposited from an acetonitrile solution on the gold substrate. In the case of TATP, first the bulk TATP Raman spectrum was recorded and compared with the SERS spectrum, generated by deposition out of the gas phase. The frequencies of the SERS spectrum are hardly shifted compared to the spectrum of bulk TATP. The influence of the nanostructured gold substrate temperature on the signals of TATP was studied. A decrease in temperature up to 200K increased the intensities of the TATP bands in the SERS spectrum; below 200K, the TATP fingerprint disappeared.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
    [CrossRef] [PubMed]
  2. I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
    [CrossRef]
  3. M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength,” Vibr. Spectrosc. 38, 17–28 (2005).
    [CrossRef]
  4. F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
    [CrossRef]
  5. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  6. K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999).
    [CrossRef]
  7. K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
    [CrossRef]
  8. F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
    [CrossRef] [PubMed]
  9. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14, 847–857(2006).
    [CrossRef] [PubMed]
  10. X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
    [CrossRef]
  11. V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
    [CrossRef]
  12. P. Jacob, B. Wehling, W. Hill, and D. Klockow, “Feasibility study of Raman spectroscopy as a tool to investigate the liquid-phase chemistry of aliphatic organic peroxides,” Appl. Spectrosc. 51, 74–80 (1997).
    [CrossRef]
  13. G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, 3rd ed. (Wiley, 2001).
  14. B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
    [CrossRef]
  15. J. Oxley, J. Smith, J. Brady, F. Dunikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62, 906–915(2008).
    [CrossRef] [PubMed]
  16. M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  17. Y. S. Pang, H. J. Hwang, and M. S. Kim, “Reversible temperature dependence in surface-enhanced Raman scattering of 1-propanethiol adsorbed on a silver island film,” J. Phys. Chem 102, 7203–7209 (1998).
    [CrossRef]
  18. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023 (1980).
    [CrossRef]
  19. H. P. Chiang, P. T. Leung, and W. S. Tse, “The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures,” J. Chem. Phys. 108, 2659–2660 (1998).
    [CrossRef]
  20. H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate—temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 (2000).
    [CrossRef]

2008 (3)

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
[CrossRef]

J. Oxley, J. Smith, J. Brady, F. Dunikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62, 906–915(2008).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength,” Vibr. Spectrosc. 38, 17–28 (2005).
[CrossRef]

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

2004 (1)

K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
[CrossRef]

2003 (1)

G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
[CrossRef] [PubMed]

2001 (1)

G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, 3rd ed. (Wiley, 2001).

2000 (1)

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate—temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 (2000).
[CrossRef]

1999 (1)

K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999).
[CrossRef]

1998 (2)

H. P. Chiang, P. T. Leung, and W. S. Tse, “The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures,” J. Chem. Phys. 108, 2659–2660 (1998).
[CrossRef]

Y. S. Pang, H. J. Hwang, and M. S. Kim, “Reversible temperature dependence in surface-enhanced Raman scattering of 1-propanethiol adsorbed on a silver island film,” J. Phys. Chem 102, 7203–7209 (1998).
[CrossRef]

1997 (2)

V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
[CrossRef]

P. Jacob, B. Wehling, W. Hill, and D. Klockow, “Feasibility study of Raman spectroscopy as a tool to investigate the liquid-phase chemistry of aliphatic organic peroxides,” Appl. Spectrosc. 51, 74–80 (1997).
[CrossRef]

1995 (1)

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
[CrossRef]

1985 (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

1980 (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023 (1980).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Almog, J.

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Alt, A.

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

Bertone, J. F.

K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
[CrossRef]

Boese, R.

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Brady, J.

Brauer, B.

B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
[CrossRef]

Buttigieg, G. A.

G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
[CrossRef] [PubMed]

Chaffin, N. C.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
[CrossRef]

Chang, S.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Charlton, M. D. B.

Chiang, H. P.

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate—temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 (2000).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, “The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures,” J. Chem. Phys. 108, 2659–2660 (1998).
[CrossRef]

Christesen, S. D.

K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
[CrossRef]

Cooper, J. M.

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

Daniel, N. W.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
[CrossRef]

Denson, S.

G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
[CrossRef] [PubMed]

Denton, M. B.

G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
[CrossRef] [PubMed]

Docherty, F. T.

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

Dubnikova, F.

B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
[CrossRef]

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Dunikova, F.

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Gerber, R. B.

B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
[CrossRef]

Gersten, J.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023 (1980).
[CrossRef]

Graham, D.

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

Griffiths, P. R.

M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength,” Vibr. Spectrosc. 38, 17–28 (2005).
[CrossRef]

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
[CrossRef]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Hill, W.

Huvenne, J. P.

V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
[CrossRef]

Hwang, H. J.

Y. S. Pang, H. J. Hwang, and M. S. Kim, “Reversible temperature dependence in surface-enhanced Raman scattering of 1-propanethiol adsorbed on a silver island film,” J. Phys. Chem 102, 7203–7209 (1998).
[CrossRef]

Itzhaky, H.

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Jacob, P.

Janni, J. A.

K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999).
[CrossRef]

Jia, H.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Keinan, E.

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Kim, M. S.

Y. S. Pang, H. J. Hwang, and M. S. Kim, “Reversible temperature dependence in surface-enhanced Raman scattering of 1-propanethiol adsorbed on a silver island film,” J. Phys. Chem 102, 7203–7209 (1998).
[CrossRef]

Klein, J. D.

K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999).
[CrossRef]

Klockow, D.

Knight, A. K.

G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
[CrossRef] [PubMed]

Kosloff, R.

J. Oxley, J. Smith, J. Brady, F. Dunikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62, 906–915(2008).
[CrossRef] [PubMed]

B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
[CrossRef]

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Legrand, P.

V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
[CrossRef]

Leung, P. T.

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate—temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 (2000).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, “The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures,” J. Chem. Phys. 108, 2659–2660 (1998).
[CrossRef]

Lewis, I. R.

M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength,” Vibr. Spectrosc. 38, 17–28 (2005).
[CrossRef]

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
[CrossRef]

Lewis, M. L.

M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength,” Vibr. Spectrosc. 38, 17–28 (2005).
[CrossRef]

Li, X.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Mahnkopf, S.

Marren, P. J.

K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
[CrossRef]

McHuge, C. J.

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Monaghan, P. B.

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Netti, C. M.

Nitzan, A.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023 (1980).
[CrossRef]

Oxley, J.

Pang, Y. S.

Y. S. Pang, H. J. Hwang, and M. S. Kim, “Reversible temperature dependence in surface-enhanced Raman scattering of 1-propanethiol adsorbed on a silver island film,” J. Phys. Chem 102, 7203–7209 (1998).
[CrossRef]

Peng, G.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Perney, N. M. B.

Pommier, C.

G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
[CrossRef] [PubMed]

Smith, J.

Smith, W. E.

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

Socrates, G.

G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, 3rd ed. (Wiley, 2001).

Sombret, B.

V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
[CrossRef]

Spencer, K. M.

K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
[CrossRef]

K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999).
[CrossRef]

Suc, S.

V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
[CrossRef]

Sylvia, J. M.

K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
[CrossRef]

K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999).
[CrossRef]

Tan, J.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Tse, W. S.

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate—temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 (2000).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, “The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures,” J. Chem. Phys. 108, 2659–2660 (1998).
[CrossRef]

Tungol, M. W.

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
[CrossRef]

Vacque, V.

V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
[CrossRef]

Wang, X.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Wehling, B.

Yang, J.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Yin, H.

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

Zeiri, L.

Zeiri, Y.

J. Oxley, J. Smith, J. Brady, F. Dunikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62, 906–915(2008).
[CrossRef] [PubMed]

B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
[CrossRef]

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

Zoorob, M. E.

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Forensic Sci. Int. (1)

G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characerization of the explosive triacetone triperoxide and detection by ion mobility spectroscopy,” Forensic Sci. Int. 135, 53–59 (2003).
[CrossRef] [PubMed]

IEEE Sens. J. (1)

F. T. Docherty, P. B. Monaghan, C. J. McHuge, D. Graham, W. E. Smith, and J. M. Cooper, “Simultaneous multianalyte identification of molecular species involved in terrorism using raman spectroscopy,” IEEE Sens. J. 5, 632–639 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiri, R. Boese, H. Itzhaky, A. Alt, and E. Keinan, “Decomposition of triacetone triperoxide is an entropic explosion,” J. Am. Chem. Soc. 127, 1146–1159 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023 (1980).
[CrossRef]

H. P. Chiang, P. T. Leung, and W. S. Tse, “The surface plasmon enhancement effect on adsorbed molecules at elevated temperatures,” J. Chem. Phys. 108, 2659–2660 (1998).
[CrossRef]

J. Phys. Chem (1)

Y. S. Pang, H. J. Hwang, and M. S. Kim, “Reversible temperature dependence in surface-enhanced Raman scattering of 1-propanethiol adsorbed on a silver island film,” J. Phys. Chem 102, 7203–7209 (1998).
[CrossRef]

J. Phys. Chem. B (1)

H. P. Chiang, P. T. Leung, and W. S. Tse, “Remarks on the substrate—temperature dependence of surface-enhanced Raman scattering,” J. Phys. Chem. B 104, 2348–2350 (2000).
[CrossRef]

Opt. Express (1)

Proc. SPIE (3)

X. Wang, S. Chang, J. Yang, J. Tan, H. Jia, H. Yin, X. Li, and G. Peng, “Detection of TNT in acetone using Raman spectroscopic signature,” Proc. SPIE 6622, 662219 (2008).
[CrossRef]

K. M. Spencer, J. M. Sylvia, J. A. Janni, and J. D. Klein, “Advances in landmine detection using surface-enhanced raman spectroscopy,” Proc. SPIE 3710, 373–399 (1999).
[CrossRef]

K. M. Spencer, J. M. Sylvia, P. J. Marren, J. F. Bertone, and S. D. Christesen, “Surface-enhanced Raman spectroscopy for homeland defense,” Proc. SPIE 5269, 1–8 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Spectrochim. Acta A, Part A (1)

B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochim. Acta A, Part A 71, 1438–1445 (2008).
[CrossRef]

Spectrochim. Acta Part A (1)

I. R. Lewis, N. W. Daniel, Jr., N. C. Chaffin, P. R. Griffiths, and M. W. Tungol, “Raman spectroscopic studies of expolsive materials: towards a fieldable explosives detector,” Spectrochim. Acta Part A 51, 1985–2000 (1995).
[CrossRef]

Spectrochim. Acta, Part A (1)

V. Vacque, B. Sombret, J. P. Huvenne, P. Legrand, and S. Suc, “Characterisation of the O─O peroxide bond by vibrational spectroscopy,” Spectrochim. Acta, Part A 53, 55–66 (1997).
[CrossRef]

Vibr. Spectrosc. (1)

M. L. Lewis, I. R. Lewis, and P. R. Griffiths, “Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength,” Vibr. Spectrosc. 38, 17–28 (2005).
[CrossRef]

Other (1)

G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, 3rd ed. (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scanning electron microscope images of the (a) Klarite substrate and (b) pits of the Klarite substrate.

Fig. 2
Fig. 2

(A) Schema of the modular device for the detection of explosives, (B) technical drawing of the analysis cell and evaporation cell.

Fig. 3
Fig. 3

Chemical structure of (a) trinitrotoluene (TNT) and (b) triacetone triperoxide (TATP).

Fig. 4
Fig. 4

Raman spectra of (a) acetonitrile on a nanostructured gold substrate, (b) TNT deposited from acetonitrile on a nanostructured gold surface, and (c) TNT resublimated from the gas phase all at a nanostructured gold surface. Excitation wavelength 785 nm .

Fig. 5
Fig. 5

Raman spectra of TNT (a) on a nanostructured gold substrate, (b) on a smooth gold surface, and (c) on a quartz glass substrate.

Fig. 6
Fig. 6

Raman spectra of (a) TATP, (b) TATP resublimated from the gas phase at a nanostructured gold surface. Excitation wavelength 785 nm .

Fig. 7
Fig. 7

Raman spectra of TATP resublimated from the gas phase at different temperatures of the nanostructured gold substrate. Excitation wavelength 785 nm .

Tables (1)

Tables Icon

Table 1 Comparision of TATP Raman and SERS Bands; Excitation 785 nm a

Metrics