Abstract

We describe theoretical and experimental demonstration for optical detection of ultrasound using a spectral hole engraved in cryogenically cooled rare-earth ion-doped solids. Our method utilizes the dispersion effects due to the spectral hole to perform phase-to-amplitude modulation conversion. Like previous approaches using spectral holes, it has the advantage of detection with large étendue. The method also has the benefit that high sensitivity can be obtained with moderate absorption contrast for the spectral holes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002).
    [CrossRef] [PubMed]
  2. R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999); and references therein.
    [CrossRef]
  3. C. B. Scruby and L. E. Drain, Laser Ultrasonics (Adam Hilger, 1990).
  4. H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004).
    [CrossRef]
  5. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
    [CrossRef] [PubMed]
  6. J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
    [CrossRef]
  7. J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989).
    [CrossRef]
  8. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
    [CrossRef]
  9. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
    [CrossRef] [PubMed]
  10. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007); and references therein.
    [CrossRef] [PubMed]
  11. S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010); and references therein.
    [CrossRef] [PubMed]
  12. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
    [CrossRef] [PubMed]
  13. N. Korneev, P. Rodríguez-Montero, and O. Benavides, “Rubidium vapor holography for noncontact adaptive detection of ultrasound,” Opt. Lett. 34, 1964–1966 (2009).
    [CrossRef] [PubMed]
  14. S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
    [CrossRef]
  15. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
    [CrossRef]
  16. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
    [CrossRef] [PubMed]
  17. R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  18. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  19. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [CrossRef] [PubMed]
  20. J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
    [CrossRef]
  21. B. Julsgaard, A. Walther, S. Kröll, and L. Rippe, “Understanding laser stabilization using spectral hole burning,” Opt. Express 15, 11444–11465 (2007).
    [CrossRef] [PubMed]
  22. T. Böttger, “Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: material and device optimization,” Ph.D. thesis (Montana State University, 2002).
  23. W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

2010 (2)

2009 (1)

2008 (1)

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

2007 (2)

2005 (1)

2004 (3)

H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004).
[CrossRef]

T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
[CrossRef] [PubMed]

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

2002 (2)

T. Böttger, “Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: material and device optimization,” Ph.D. thesis (Montana State University, 2002).

R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002).
[CrossRef] [PubMed]

2001 (1)

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

1999 (1)

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999); and references therein.
[CrossRef]

1994 (1)

1991 (1)

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

1990 (1)

C. B. Scruby and L. E. Drain, Laser Ultrasonics (Adam Hilger, 1990).

1989 (1)

J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

1985 (1)

J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
[CrossRef]

1983 (1)

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1980 (1)

1966 (1)

Atlan, M.

Bachor, H.-A.

H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004).
[CrossRef]

Benavides, O.

Bjorklund, G. C.

Blonigen, F.

Boccara, A. C.

Böttger, T.

T. Böttger, “Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: material and device optimization,” Ph.D. thesis (Montana State University, 2002).

Bouchard, P.

J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

Budker, D.

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

Busse, G.

R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002).
[CrossRef] [PubMed]

Chiao, R. Y.

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

Delaye, P.

Dewhurst, R. J.

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999); and references therein.
[CrossRef]

DiMarzio, C. A.

Drain, L. E.

C. B. Scruby and L. E. Drain, Laser Ultrasonics (Adam Hilger, 1990).

Drever, R.

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Dunn, A. K.

Farahi, S.

Farr, W.

W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

Ford, G. M.

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Forget, B. C.

Goy, P.

Grabar, A. A.

Gross, M.

Hall, J.

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

Hemmer, P.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Héon, R.

J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

Hough, J.

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hsiung, D. S.

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

Huignard, J.-P.

Ing, R. K.

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Jean, F.

Julsgaard, B.

Kim, C.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Kimball, D. F.

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

Korneev, N.

Korystov, D.

W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

Kowalski, F. V.

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Krohn, N.

R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002).
[CrossRef] [PubMed]

Kröll, S.

Ledingham, P. M.

W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

Lenth, W.

Lesaffre, M.

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

Maguluri, G.

Monchalin, J.-P.

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
[CrossRef]

Montemezzani, G.

Munley, A.

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Murray, T. W.

Nieva, A.

Padioleau, C.

J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

Pfleiderer, K.

R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002).
[CrossRef] [PubMed]

Ralph, T. C.

H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004).
[CrossRef]

Ramaz, F.

Rippe, L.

Rochester, S. M.

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

Rodríguez-Montero, P.

Roosen, G.

Roy, R. A.

Scruby, C. B.

C. B. Scruby and L. E. Drain, Laser Ultrasonics (Adam Hilger, 1990).

Sellars, M. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

Shan, Q.

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999); and references therein.
[CrossRef]

Siegman, A. E.

Stoessel, R.

R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002).
[CrossRef] [PubMed]

Sui, L.

Supplee, J. M.

Tay, J. W.

W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

Wagner, K. H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Walther, A.

Wang, L. V.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Ward, H.

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Whittaker, E. A.

Yashchuk, V. V.

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

Zhang, H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Drever, J. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Appl. Phys. Lett. (4)

J.-P. Monchalin, “Optical detection of ultrasound at a distance using a confocal Fabry-Perot interferometer,” Appl. Phys. Lett. 47, 14–16 (1985).
[CrossRef]

J.-P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139–R168 (1999); and references therein.
[CrossRef]

Nature (1)

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (2)

J. J. Longdell and M. J. Sellars, “Experimental demonstration of quantum-state tomography and qubit-qubit interactions for rare-earth-metal-ion-based solid-state qubits,” Phys. Rev. A 69, 032307 (2004).
[CrossRef]

S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk, “Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor,” Phys. Rev. A 63, 043814 (2001).
[CrossRef]

Ultrasonics (1)

R. Stoessel, N. Krohn, K. Pfleiderer, and G. Busse, “Air-coupled ultrasound inspection of various materials,” Ultrasonics 40, 159–163 (2002).
[CrossRef] [PubMed]

Other (4)

C. B. Scruby and L. E. Drain, Laser Ultrasonics (Adam Hilger, 1990).

H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, 2004).
[CrossRef]

T. Böttger, “Laser frequency stabilization to spectral hole burning frequency references in erbium-doped crystals: material and device optimization,” Ph.D. thesis (Montana State University, 2002).

W. Farr, J. W. Tay, P. M. Ledingham, D. Korystov, and J. J. Longdell, “Hybrid optical and electronic laser locking using spectral hole burning” (manuscript in preparation)..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. The experimental beam (path shown by red solid lines) is frequency shifted and gated using two AOMs. The ultrasonic pulses were applied using a PZT-backed mirror. The beam is then steered through a prepared Tm:YAG 0.1% crystal before being detected using a photodetector. The laser is locked to a spectral hole using a method similar to Bottger [22] (path shown by blue dashed lines), except with optical feedback [23].

Fig. 2
Fig. 2

Response of a spectral hole. This shows (a) the normalized transmission through the hole and its calculated fit (calculated fit shown by red dashed curve), and (b) the phase response as given by the Kramers–Krönig relations. The arrows indicate the position of the sideband and carrier frequencies of the ultrasonically modulated light.

Fig. 3
Fig. 3

Ultrasonic pulse detection. The detected intensity (blue solid line) is shown with respect to the applied pulses (red dashed line). The axis on the right indicates the normalized pulse amplitude.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E r ( t ) = E 0 exp ( ω c ) exp ( i M Re { exp ( i ω M t ) } ) ,
E r ( t ) = E 0 [ i M 2 exp ( i ω M t ) + 1 + i M 2 exp ( i ω M t ) ] .
E r ( t ) = E 0 [ i M 2 T ( ω M ) exp ( i ω M t ) + T ( 0 ) + i M 2 T ( ω M ) exp ( i ω M t ) ] .
I ( t ) = I 0 ( 1 + M Re { β exp ( i ω m t ) } ) ,
T ( ω ) = exp [ α L 2 ( 1 Γ Γ i Δ ) ] ,

Metrics