Abstract

We demonstrate good optical quality TiO2 thin films grown by atomic layer deposition at 120°C. The optical properties were studied using spectroscopic ellipsometry and prism coupling methods. The refractive index was 2.27, and the slab waveguide propagation loss was less than 1dB/cm at 1.53μm. A high quality resonant waveguide grating was fabricated using a thin TiO2 layer on top of a SiO2 grating.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Rabady and I. Avrutsky, “Titania, silicon dioxide, and tantalum pentoxide waveguides and optical resonant filters prepared with radio-frequency magnetron sputtering and annealing,” Appl. Opt. 44, 378–383 (2005).
    [CrossRef] [PubMed]
  2. C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
    [CrossRef]
  3. Z. Jiwei, Y. Tao, Z. Liangying, and Y. Xi, “The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process,” Ceram. Int. 25, 667–670 (1999).
    [CrossRef]
  4. T. Suntola and J. Antson, “Method for producing compound thin films,” U.S. patent 4058430 (15 November 1977).
  5. Planar Systems, Inc.,http://www.planarsystems.com/.
  6. R. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
    [CrossRef]
  7. G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
    [CrossRef]
  8. G. Triani, P. Evans, D. Attard, and K. Prince, “Nanostructured TiO2 membranes by atomic layer deposition,” J. Mater. Chem. 16, 1355–1359 (2006).
    [CrossRef]
  9. T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009).
    [CrossRef]
  10. A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
    [CrossRef]
  11. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613(1993).
    [CrossRef] [PubMed]
  12. T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10, 840–843(2002).
    [PubMed]
  13. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
    [CrossRef]
  14. P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16,364–16,370 (2008).
    [CrossRef]
  15. M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
    [CrossRef]
  16. J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, “Morphology and structure of TiO2 thin films grown by atomic layer deposition,” J. Cryst. Growth 148, 268–275 (1995).
    [CrossRef]
  17. J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
    [CrossRef]
  18. J. Aarik, A. Aidla, H. Mandar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiC14 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–158(2001).
    [CrossRef]
  19. M. Ritala, M. Leskelä, L. Niinistö, and T. Prohaska, “Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films,” Thin Solid Films 249, 155–162(1994).
    [CrossRef]
  20. J. Maula, K. Harkonen, and A. Nikolov, “Multilayer material and method of preparing same,” U.S. patent application 2006/0134433 A1 (2006).
  21. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1, 742–753 (1984).
    [CrossRef]
  22. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems and Applications, H.Herzig, ed. (Taylor & Francis, 1997).

2010 (1)

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

2009 (2)

T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009).
[CrossRef]

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

2008 (1)

P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16,364–16,370 (2008).
[CrossRef]

2007 (1)

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

2006 (1)

G. Triani, P. Evans, D. Attard, and K. Prince, “Nanostructured TiO2 membranes by atomic layer deposition,” J. Mater. Chem. 16, 1355–1359 (2006).
[CrossRef]

2005 (2)

2002 (1)

2001 (1)

J. Aarik, A. Aidla, H. Mandar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiC14 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–158(2001).
[CrossRef]

1999 (1)

Z. Jiwei, Y. Tao, Z. Liangying, and Y. Xi, “The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process,” Ceram. Int. 25, 667–670 (1999).
[CrossRef]

1997 (1)

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
[CrossRef]

1996 (1)

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

1995 (1)

J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, “Morphology and structure of TiO2 thin films grown by atomic layer deposition,” J. Cryst. Growth 148, 268–275 (1995).
[CrossRef]

1994 (1)

M. Ritala, M. Leskelä, L. Niinistö, and T. Prohaska, “Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films,” Thin Solid Films 249, 155–162(1994).
[CrossRef]

1993 (2)

M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
[CrossRef]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613(1993).
[CrossRef] [PubMed]

1984 (1)

Aarik, J.

J. Aarik, A. Aidla, H. Mandar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiC14 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–158(2001).
[CrossRef]

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
[CrossRef]

J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, “Morphology and structure of TiO2 thin films grown by atomic layer deposition,” J. Cryst. Growth 148, 268–275 (1995).
[CrossRef]

Aidla, A.

J. Aarik, A. Aidla, H. Mandar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiC14 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–158(2001).
[CrossRef]

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
[CrossRef]

J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, “Morphology and structure of TiO2 thin films grown by atomic layer deposition,” J. Cryst. Growth 148, 268–275 (1995).
[CrossRef]

Alasaarela, T.

T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009).
[CrossRef]

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

Antson, J.

T. Suntola and J. Antson, “Method for producing compound thin films,” U.S. patent 4058430 (15 November 1977).

Attard, D.

G. Triani, P. Evans, D. Attard, and K. Prince, “Nanostructured TiO2 membranes by atomic layer deposition,” J. Mater. Chem. 16, 1355–1359 (2006).
[CrossRef]

Avrutsky, I.

Burford, R. P.

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

Campbell, J. A.

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

Catherinot, A.

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Champeaux, C.

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Chilwell, J.

Davis, J.

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

Evans, P.

G. Triani, P. Evans, D. Attard, and K. Prince, “Nanostructured TiO2 membranes by atomic layer deposition,” J. Mater. Chem. 16, 1355–1359 (2006).
[CrossRef]

Evans, P. J.

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

Garapon, C.

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Hakkarainen, T.

T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009).
[CrossRef]

Harkonen, K.

J. Maula, K. Harkonen, and A. Nikolov, “Multilayer material and method of preparing same,” U.S. patent application 2006/0134433 A1 (2006).

Hodgkinson, I.

Honkanen, S.

T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009).
[CrossRef]

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

Hyvärinen, O.

P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16,364–16,370 (2008).
[CrossRef]

Jacquier, B.

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Jiwei, Z.

Z. Jiwei, Y. Tao, Z. Liangying, and Y. Xi, “The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process,” Ceram. Int. 25, 667–670 (1999).
[CrossRef]

Karvinen, P.

P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16,364–16,370 (2008).
[CrossRef]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Karvonen, L.

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

Kauranen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Khanna, A.

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

Kiisler, A.

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
[CrossRef]

Kuittinen, M.

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Latella, B. A.

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

Leivo, S.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Leskela, M.

M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
[CrossRef]

Leskelä, M.

M. Ritala, M. Leskelä, L. Niinistö, and T. Prohaska, “Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films,” Thin Solid Films 249, 155–162(1994).
[CrossRef]

Liangying, Z.

Z. Jiwei, Y. Tao, Z. Liangying, and Y. Xi, “The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process,” Ceram. Int. 25, 667–670 (1999).
[CrossRef]

Magnusson, R.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613(1993).
[CrossRef] [PubMed]

Mandar, H.

J. Aarik, A. Aidla, H. Mandar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiC14 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–158(2001).
[CrossRef]

Marchet, P.

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Maula, J.

J. Maula, K. Harkonen, and A. Nikolov, “Multilayer material and method of preparing same,” U.S. patent application 2006/0134433 A1 (2006).

Mugnier, J.

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Niinisto, L.

M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
[CrossRef]

Niinistö, L.

M. Ritala, M. Leskelä, L. Niinistö, and T. Prohaska, “Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films,” Thin Solid Films 249, 155–162(1994).
[CrossRef]

Nikolov, A.

J. Maula, K. Harkonen, and A. Nikolov, “Multilayer material and method of preparing same,” U.S. patent application 2006/0134433 A1 (2006).

Nuutinen, T.

P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16,364–16,370 (2008).
[CrossRef]

Nykanen, E.

M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
[CrossRef]

Panczer, G.

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Prince, K.

G. Triani, P. Evans, D. Attard, and K. Prince, “Nanostructured TiO2 membranes by atomic layer deposition,” J. Mater. Chem. 16, 1355–1359 (2006).
[CrossRef]

Prohaska, T.

M. Ritala, M. Leskelä, L. Niinistö, and T. Prohaska, “Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films,” Thin Solid Films 249, 155–162(1994).
[CrossRef]

Puurunen, R.

R. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
[CrossRef]

Rabady, R.

Ritala, M.

M. Ritala, M. Leskelä, L. Niinistö, and T. Prohaska, “Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films,” Thin Solid Films 249, 155–162(1994).
[CrossRef]

M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
[CrossRef]

Sammelselg, V.

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
[CrossRef]

J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, “Morphology and structure of TiO2 thin films grown by atomic layer deposition,” J. Cryst. Growth 148, 268–275 (1995).
[CrossRef]

Säynätjoki, A.

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009).
[CrossRef]

Siltanen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Soininen, P.

M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
[CrossRef]

Stenberg, P.

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

Suntola, T.

T. Suntola and J. Antson, “Method for producing compound thin films,” U.S. patent 4058430 (15 November 1977).

Tao, Y.

Z. Jiwei, Y. Tao, Z. Liangying, and Y. Xi, “The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process,” Ceram. Int. 25, 667–670 (1999).
[CrossRef]

Tervonen, A.

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

Triani, G.

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

G. Triani, P. Evans, D. Attard, and K. Prince, “Nanostructured TiO2 membranes by atomic layer deposition,” J. Mater. Chem. 16, 1355–1359 (2006).
[CrossRef]

Turunen, J.

T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10, 840–843(2002).
[PubMed]

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems and Applications, H.Herzig, ed. (Taylor & Francis, 1997).

Uustare, T.

J. Aarik, A. Aidla, H. Mandar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiC14 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–158(2001).
[CrossRef]

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
[CrossRef]

J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, “Morphology and structure of TiO2 thin films grown by atomic layer deposition,” J. Cryst. Growth 148, 268–275 (1995).
[CrossRef]

Vahimaa, P.

P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16,364–16,370 (2008).
[CrossRef]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10, 840–843(2002).
[PubMed]

Vallius, T.

Voima, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613(1993).
[CrossRef] [PubMed]

Xi, Y.

Z. Jiwei, Y. Tao, Z. Liangying, and Y. Xi, “The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process,” Ceram. Int. 25, 667–670 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91, 111109 (2007).
[CrossRef]

Appl. Surf. Sci. (2)

J. Aarik, A. Aidla, H. Mandar, and T. Uustare, “Atomic layer deposition of titanium dioxide from TiC14 and H2O: investigation of growth mechanism,” Appl. Surf. Sci. 172, 148–158(2001).
[CrossRef]

C. Garapon, C. Champeaux, J. Mugnier, G. Panczer, P. Marchet, A. Catherinot, and B. Jacquier, “Preparation of TiO2 thin films by pulsed laser deposition for waveguiding applications,” Appl. Surf. Sci. 96–98, 836–841 (1996).
[CrossRef]

Ceram. Int. (1)

Z. Jiwei, Y. Tao, Z. Liangying, and Y. Xi, “The optical waveguiding properties of TiO2–SiO2 composite films prepared by the sol-gel process,” Ceram. Int. 25, 667–670 (1999).
[CrossRef]

J. Appl. Phys. (1)

R. Puurunen, “Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process,” J. Appl. Phys. 97, 121301 (2005).
[CrossRef]

J. Cryst. Growth (1)

J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, “Morphology and structure of TiO2 thin films grown by atomic layer deposition,” J. Cryst. Growth 148, 268–275 (1995).
[CrossRef]

J. Mater. Chem. (1)

G. Triani, P. Evans, D. Attard, and K. Prince, “Nanostructured TiO2 membranes by atomic layer deposition,” J. Mater. Chem. 16, 1355–1359 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009).
[CrossRef]

Opt. Express (3)

A. Säynätjoki, T. Alasaarela, A. Khanna, L. Karvonen, P. Stenberg, M. Kuittinen, A. Tervonen, and S. Honkanen, “Angled sidewalls in silicon slot waveguides: conformal filling and mode properties,” Opt. Express 17, 21,066–21,076 (2009).
[CrossRef]

P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16, 16,364–16,370 (2008).
[CrossRef]

T. Vallius, P. Vahimaa, and J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10, 840–843(2002).
[PubMed]

Thin Solid Films (4)

M. Ritala, M. Leskela, E. Nykanen, P. Soininen, and L. Niinisto, “Growth of titanium dioxide thin films by atomic layer epitaxy,” Thin Solid Films 225, 288–295 (1993).
[CrossRef]

J. Aarik, A. Aidla, A. Kiisler, T. Uustare, and V. Sammelselg, “Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270–273 (1997).
[CrossRef]

M. Ritala, M. Leskelä, L. Niinistö, and T. Prohaska, “Surface roughness reduction in atomic layer epitaxy growth of titanium dioxide thin films,” Thin Solid Films 249, 155–162(1994).
[CrossRef]

G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, “Low temperature atomic layer deposition of titania thin films,” Thin Solid Films 518, 3182–3189 (2010).
[CrossRef]

Other (4)

T. Suntola and J. Antson, “Method for producing compound thin films,” U.S. patent 4058430 (15 November 1977).

Planar Systems, Inc.,http://www.planarsystems.com/.

J. Maula, K. Harkonen, and A. Nikolov, “Multilayer material and method of preparing same,” U.S. patent application 2006/0134433 A1 (2006).

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems and Applications, H.Herzig, ed. (Taylor & Francis, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM image of amorphous Ti O 2 grown on silicon slot structures at 120 ° C .

Fig. 2
Fig. 2

SEM image of Ti O 2 grown on silicon slot structures at 350 ° C (a) without and (b) with intermediate Al 2 O 3 layers.

Fig. 3
Fig. 3

Refractive index and extinction coefficient of amorphous Ti O 2 film as a function of wavelength as determined by spectroscopic ellipsometry.

Fig. 4
Fig. 4

Prism coupling measurements from Ti O 2 film at (a) 633 nm and (b) 1.53 μm wavelengths on a glass substrate. The effective indices of the modes are shown next to the corresponding dips.

Fig. 5
Fig. 5

Intensity as a function of distance for the amorphous Ti O 2 film as determined by the Metricon fiber loss measurement add-on at 633 nm and 1.53 μm wavelengths. The fitting procedure of the Metricon bundled software gave values of 2 3.5 dB / cm at 633 nm and 0.8 0.9 dB / cm at 1.53 μm wavelength.

Fig. 6
Fig. 6

SEM image of the RWG that contains an amorphous ALD Ti O 2 layer on a binary Si O 2 grating.

Fig. 7
Fig. 7

Reflectance (TE-polarized light at 20 ° incidence angle) of the fabricated RWG. The solid line represents the theoretical reflectance calculated using the Fourier modal method, and the dotted line is the measured reflectance.

Metrics