Abstract

Nowadays liquid-crystal variable retarders (LCVRs) are widely used in optical systems because of their capacity to provide a controlled variable optical retardance by means of an applied voltage, without the need of any moving mechanical part. Nevertheless, the main disadvantages of these components, reported by users in several papers, are the necessity of using a temperature control system for precise measurements, the degradation under UV irradiation, and the lack of spatial retardance homogeneity. In this paper, we report that the orientation of the LCVR fast axis may also be dependent on applied voltage. The consideration of this phenomenon improves the performances of an imaging polarimeter. In this work, we present the problem, introduce the method of calibration that was used for the experiment, and discuss the results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Shurcliff, Polarized Light (Harvard U. Press, 1962).
  2. L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
    [CrossRef]
  3. D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 982–987.
    [CrossRef]
  4. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004).
    [CrossRef] [PubMed]
  5. P. Terrier, V. Devlaminck, and J. M. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423–430 (2008).
    [CrossRef]
  6. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  7. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006).
    [CrossRef] [PubMed]
  8. J. E. Wolfe and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels,” Appl. Opt. 45, 1688–1703(2006).
    [CrossRef] [PubMed]
  9. J. S. Baba and P. R. Boudreaux, “Wavelength, temperature, and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device,” Appl. Opt. 46, 5539–5544 (2007).
    [CrossRef] [PubMed]
  10. R. L. Heredero, N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sánchez, M. Reina, V. Martínez Pillet, and A. Álvarez-Herrero, “Liquid-crystal variable retarders for aerospace polarimetry applications,” Appl. Opt. 46, 689–698(2007).
    [CrossRef] [PubMed]
  11. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004).
    [CrossRef] [PubMed]
  12. J. S. Tyo, “Noise equalization in Stokes parameter obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000).
    [CrossRef]
  13. A. De Martino, Y. Kim, E. Garcia-Caurel, B. Laude, and B. Drevillon, “Optimized mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616–618 (2003).
    [CrossRef] [PubMed]
  14. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
    [CrossRef]
  15. J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes–Mueller imaging polarimeters,” Opt. Lett. 31, 2858–2860 (2006).
    [CrossRef] [PubMed]
  16. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216–222 (2000).
    [CrossRef]

2008 (1)

2007 (2)

2006 (4)

2004 (2)

2003 (1)

2000 (2)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216–222 (2000).
[CrossRef]

J. S. Tyo, “Noise equalization in Stokes parameter obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000).
[CrossRef]

1999 (1)

1991 (1)

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

Ahmad, J. E.

Álvarez-Herrero, A.

Baba, J. S.

Belenguer, T.

Bigué, L.

Boudreaux, P. R.

Boult, T. E.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

Bueno, J. M.

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216–222 (2000).
[CrossRef]

Charbois, J. M.

Chenault, D. B.

Chipman, R. A.

Compain, E.

De Martino, A.

Devlaminck, V.

Drevillon, B.

Drévillon, B.

Galland, F.

Garcia-Caurel, E.

Goldstein, D. L.

Gorria, P.

Goudail, F.

Hara, K.

D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 982–987.
[CrossRef]

Heredero, R. L.

Ikeuchi, K.

D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 982–987.
[CrossRef]

Kim, Y.

Laude, B.

Laude-Boulesteix, B.

Martínez Pillet, V.

Meriaudeau, F.

Miyazaki, D.

D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 982–987.
[CrossRef]

Morel, O.

Poirier, S.

Ramos, G.

Reina, M.

Sánchez, A.

Schwartz, L.

Shaw, J. A.

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard U. Press, 1962).

Stolz, C.

Takakura, Y.

Tan, R. T.

D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 982–987.
[CrossRef]

Terrier, P.

Tyo, J. S.

Uribe-Patarroyo, N.

Wolfe, J. E.

Wolff, L. B.

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

Appl. Opt. (8)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[CrossRef] [PubMed]

O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006).
[CrossRef] [PubMed]

J. E. Wolfe and R. A. Chipman, “Polarimetric characterization of liquid-crystal-on-silicon panels,” Appl. Opt. 45, 1688–1703(2006).
[CrossRef] [PubMed]

J. S. Baba and P. R. Boudreaux, “Wavelength, temperature, and voltage dependent calibration of a nematic liquid crystal multispectral polarization generating device,” Appl. Opt. 46, 5539–5544 (2007).
[CrossRef] [PubMed]

R. L. Heredero, N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sánchez, M. Reina, V. Martínez Pillet, and A. Álvarez-Herrero, “Liquid-crystal variable retarders for aerospace polarimetry applications,” Appl. Opt. 46, 689–698(2007).
[CrossRef] [PubMed]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004).
[CrossRef] [PubMed]

F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004).
[CrossRef] [PubMed]

E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

L. B. Wolff and T. E. Boult, “Constraining object features using a polarization reflectance model,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 635–657 (1991).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216–222 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (3)

Other (2)

W. A. Shurcliff, Polarized Light (Harvard U. Press, 1962).

D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 982–987.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System components.

Fig. 2
Fig. 2

LCVR1 retardation versus voltage.

Fig. 3
Fig. 3

Variation of the intensity with the rotation of the second polarizer: the solid curve is the reference sinusoid (without LCVR), the + show the measured values without driving voltage, and the squares show the measurements for V = 2   volts .

Fig. 4
Fig. 4

Fast-axis angular position versus driving voltage for LCVR1

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S out = M POL M R ( δ 2 ) M R ( δ 1 ) S in = M GLOBAL S in ,
I = S 0 out = A ( δ 1 , δ 2 ) S 0 in + B ( δ 1 , δ 2 ) S 1 in + C ( δ 1 , δ 2 ) S 2 in + D ( δ 1 , δ 2 ) S 3 in ,
I = M LIGHT S in ( I 1 I 2 I N ) = [ A 1 B 1 C 1 D 1 A 2 B 2 C 2 D 2 A N B N C N D N ] ( S 0 S 1 S 2 S 3 ) ,
S in = M LIGHT 1 I
( δ 1 , δ 2 ) = ( Δ 1 Δ 1 ) , ( Δ 1 Δ 2 ) , ( Δ 2 Δ 1 ) , ( Δ 2 Δ 2 ) ,
S = M POL M R ( δ ) S ,
M R ( δ ) [ 1 0 0 0 0 cos 2 2 ϕ + sin 2 2 ϕ cos δ sin 2 ϕ cos 2 ϕ ( 1 cos δ ) sin 2 ϕ cos δ 0 sin 2 ϕ cos 2 ϕ ( 1 cos δ ) sin 2 2 ϕ + cos 2 2 ϕ cos δ cos 2 ϕ sin δ 0 sin 2 ϕ sin δ cos 2 ϕ sin δ cos δ ]
M POL = 1 2 [ 1 cos 2 θ sin 2 θ 0 cos 2 θ cos 2 2 θ sin 2 θ cos 2 θ 0 sin 2 θ sin 2 θ cos 2 θ sin 2 2 θ 0 0 0 0 0 ] ,
S 0 = 1 2 [ 1 + cos 2 θ ( cos 2 2 ϕ + sin 2 2 ϕ cos δ ) + sin 2 θ sin 2 ϕ cos 2 ϕ ( 1 cos δ ) ] .
S 0 = 1 2 [ 1 + cos 2 θ cos δ ] .
( V 1 , V 2 ) = ( V 11 , V 12 ) , ( V 11 , V 22 ) , ( V 21 , V 12 ) , ( V 21 , V 22 ) ,
M LIGHT-THEO = [ 0.5000 0.4713 0.1669 0.0005 0.5000 0.2364 0.1661 0.4081 0.5000 0.0008 0.5000 0.0005 0.5000 0.2358 0.1669 0.4081 ]
M LIGHT-EXP = [ 0.5001 0.4928 0.1429 0.0382 0.5003 0.1514 0.2302 0.4218 0.4994 0.0907 0.4962 0.0870 0.5001 0.2273 0.1649 0.4188 ] .
M LIGHT-THEO-ADJ = [ 0.5000 0.4732 0.1518 0.0555 0.5000 0.1649 0.2265 0.4141 0.5000 0.0840 0.4890 0.0617 0.5000 0.2555 0.1375 0.4072 ] .

Metrics