Abstract

We analyze the propagation of surface plasmons in metallic multimode waveguides that consist of alternating stripes of different metals in the transverse direction and that are homogeneous in the longitudinal direction. The purpose of structuring the waveguide in the transverse direction is to take advantage of the different attenuation and propagation constants for different metals. Here, in particular, alternating stripes of Ag and Au are considered. This allows one to influence the modal spectrum. We consider two different, well-defined waveguide configurations. For these, the propagating plasmonic modes are calculated. Based on the numerical simulations, we discuss the attenuation and propagation behavior and show the resulting eigenmodes for different values of the structural parameters, i.e., widths and thicknesses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
    [CrossRef]
  6. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [CrossRef]
  7. A. Degiron and D. R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006).
    [CrossRef] [PubMed]
  8. B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
    [CrossRef]
  9. M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
    [CrossRef]
  10. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  11. R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T.Itoh, ed. (Wiley, 1989), pp. 381–446.
  12. R. Pregla, Analysis of Electromagnetic Fields and Waves: The Method of Lines (Wiley, 2008).
    [CrossRef]
  13. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]

2007 (2)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

2006 (2)

A. Degiron and D. R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

2004 (1)

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Baida, F.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

Besbes, M.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Bienstman, P.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Degiron, A.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Granet, G.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Guizal, B.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Helfert, S.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Hugonin, J.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Janssen, O.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Labeke, D. V.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Lalanne, P.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Moreau, A.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Nugrowati, A.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Pascher, W.

R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T.Itoh, ed. (Wiley, 1989), pp. 381–446.

Pereira, S.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Pregla, R.

R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T.Itoh, ed. (Wiley, 1989), pp. 381–446.

R. Pregla, Analysis of Electromagnetic Fields and Waves: The Method of Lines (Wiley, 2008).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Seideman, T.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Smith, D. R.

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Sukharev, M.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Urbach, H.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

van de Nes, A.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

van Haver, S.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

Xu, M.

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599–3601 (2004).
[CrossRef]

J. Eur. Opt. Soc. (1)

M. Besbes, J. Hugonin, P. Lalanne, S. van Haver, O. Janssen, A. Nugrowati, M. Xu, S. Pereira, H. Urbach, A. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. Baida, B. Guizal, and D. V. Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. 2, 07022 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

R. Pregla and W. Pascher, “The method of lines,” in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T.Itoh, ed. (Wiley, 1989), pp. 381–446.

R. Pregla, Analysis of Electromagnetic Fields and Waves: The Method of Lines (Wiley, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Field distribution of the third harmonic plasmonic even mode in (a) unstructured and (b) structured metallic core.

Fig. 2
Fig. 2

Permittivity ε for (a) Ag and (b) Au versus wavelength λ. The values were obtained by the Drude model, Eq. (1), with the parameters of Table 1 (solid curves). The reference values were taken from [10] (+).

Fig. 3
Fig. 3

(a) Real and (b) imaginary parts of the effective refractive index n eff for a single dielectric/metallic interface of Ag and Au. The permittivity for the dielectric media is chosen as ε d = 4 .

Fig. 4
Fig. 4

Structure A, conventional plasmonic waveguide; Structures B and C, plasmonic waveguides with insetted metallic inlays.

Fig. 5
Fig. 5

(a) Attenuation constant α (top) and propagation constant β (bottom) for unstructured Ag and Au layer of the m = 1 8 odd and even modes. (b) Absolute value of the magnetic field component for m = 1 5 odd modes in Ag.

Fig. 6
Fig. 6

(a) Deviations of the attenuation Δ α (top) and propagation constant Δ β (bottom) for an Ag layer with a centered Au inlay of the m = 1 8 odd and even modes. (b) Absolute value of the magnetic field component for m = 1 5 odd modes in the structured Ag/Au layer (solid curves) and the unstructured Ag layer (dotted curves).

Fig. 7
Fig. 7

(a) Deviations of the attenuation Δ α (top) and the propagation constant Δ β (bottom) for an Au layer with a centered Ag inlay of the m = 1 8 odd and even modes. (b) Absolute value of the magnetic field component for m = 1 5 odd modes in the structured Au/Ag layer (solid curves) and the unstructured Au layer (dotted curves).

Fig. 8
Fig. 8

(a) Deviations of the attenuation Δ α (top) and propagation constant Δ β (bottom) for the Au layer with two Ag inlays of the m = 1 8 odd and even modes. (b) Absolute value of the magnetic field component for m = 1 5 odd modes in the structured Au/Ag layer (solid curves) and the unstructured Au layer (dotted curves).

Fig. 9
Fig. 9

(a) Deviations of the attenuation Δ α (top) and propagation constant Δ β (bottom) for the Ag layer with two Au inlays of the m = 1 8 odd and even modes. (b) Absolute value of the magnetic field component for m = 1 5 odd modes in the structured Ag/Au layer (solid curves) and the unstructured Ag layer (dotted curves).

Fig. 10
Fig. 10

(a) Propagation constant β of the fundamental modes for the unstructured Au and Ag layer by varying t m and (b) respective propagation constant distances between Au and Ag.

Fig. 11
Fig. 11

(a) Deviations of the attenuation Δ α (top) and propagation constant Δ β (bottom) in the structured plasmonic waveguide (type B) Ag/Au inlay of the m = 1 8 odd modes for t m = 0.04 μm and t m = 0.1 μm . (b) Absolute value of the magnetic field component for m = 1 5 odd modes for t m = 0.04 μm (solid curves) and t m = 0.01 μm (dotted curves).

Fig. 12
Fig. 12

(a) Deviations of the attenuation Δ α (top) and propagation constant Δ β (bottom) in the structured plasmonic waveguide (type B) Ag/Au-inlay of the m = 1 6 even modes for t m = 0.04 μm and t m = 0.1 μm . (b) Absolute value of the magnetic field component for m = 1 5 odd modes for t m = 0.04 μm (solid curves) and t m = 0.1 μm (dotted curves).

Tables (2)

Tables Icon

Table 1 Drude Parameters

Tables Icon

Table 2 Structural Parameters a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε = ε ω p 2 ω 2 j ω t ω .

Metrics