Abstract

Holographic polymer-dispersed liquid-crystal (HPDLC) memory using liquid-crystal composites is proposed for new optical information processing. Formation of HPDLC memory using a photomask is discussed for parallel programmability to realize fast reconfiguration of optically reconfigurable gate arrays (ORGAs). The defect tolerance of HPDLC memory is investigated to clarify the defect limitation of holographic configurations using ORGAs. Experimental results show that the noise ratio less than 15% applied to HPDLC memory rarely affects its diffraction pattern or a reconfiguration context.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599(1998).
    [CrossRef]
  2. J. E. Ford, F. Yu, K. Urquhart, and Y. Fainman, “Polarization selective computer-generated holograms,” Opt. Lett. 18, 456–458 (1993).
    [CrossRef] [PubMed]
  3. U. D. Zeitner, B. Schnabel, E.-B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999).
    [CrossRef]
  4. F. Gori, “Measuring Stokes parameters by means of polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  5. S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D 38, 3371–3375 (2005).
    [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  7. T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392(1997).
    [CrossRef]
  8. A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
    [CrossRef]
  9. K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999).
    [CrossRef]
  10. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
    [CrossRef]
  11. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
    [CrossRef]
  12. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
    [CrossRef]
  13. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
    [CrossRef]
  14. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002).
    [CrossRef]
  15. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003(2002).
    [CrossRef]
  16. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
    [CrossRef]
  17. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
    [CrossRef]
  18. Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
    [CrossRef]
  19. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
    [CrossRef]
  20. M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515(2006).
    [CrossRef]
  21. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
    [CrossRef] [PubMed]
  22. D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array—perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
    [CrossRef]
  23. T. Mabuchi, K. Miyashiro, M. Watanabe, and A. Ogiwara, “Fault tolerance of a dynamic optically reconfigurable gate array with a one-time writable volume holographic memory,” in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2009) (IEEE, 2009), pp. 917–920.
    [CrossRef]
  24. A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.
  25. M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009).
    [CrossRef] [PubMed]
  26. A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007).
    [CrossRef]
  27. A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
    [CrossRef]
  28. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (4)

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
[CrossRef] [PubMed]

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
[CrossRef] [PubMed]

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array—perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

2007 (1)

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007).
[CrossRef]

2006 (1)

M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515(2006).
[CrossRef]

2005 (1)

S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D 38, 3371–3375 (2005).
[CrossRef]

2004 (2)

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

2002 (4)

2001 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

2000 (3)

J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

1999 (4)

A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
[CrossRef]

K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999).
[CrossRef]

U. D. Zeitner, B. Schnabel, E.-B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal stripe grating pixels,” Appl. Opt. 38, 2177–2181 (1999).
[CrossRef]

F. Gori, “Measuring Stokes parameters by means of polarization grating,” Opt. Lett. 24, 584–586 (1999).
[CrossRef]

1998 (1)

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599(1998).
[CrossRef]

1997 (1)

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392(1997).
[CrossRef]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

1993 (1)

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Bandyopadhyay, P.

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599(1998).
[CrossRef]

Bowley, C. C.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Brandelik, D. M.

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Butler, J. J.

Chandra, S.

Cloutier, S. G.

S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D 38, 3371–3375 (2005).
[CrossRef]

Crawford, G. P.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Date, M.

K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999).
[CrossRef]

Du, F.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Fainman, Y.

Ford, J. E.

Ghosh, A.

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599(1998).
[CrossRef]

Gori, F.

Hirokari, T.

Hisaki, T.

K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999).
[CrossRef]

Holmes, M. E.

M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
[CrossRef]

Horiguchi, S.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Imai, H.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Kakiuchida, H.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007).
[CrossRef]

Karasawa, T.

A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
[CrossRef]

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392(1997).
[CrossRef]

Kato, K.

K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999).
[CrossRef]

Kley, E.-B.

Kobayashi, F.

M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515(2006).
[CrossRef]

A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.

Kuratomi, Y.

A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
[CrossRef]

Lu, Y.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Mabuchi, T.

T. Mabuchi, K. Miyashiro, M. Watanabe, and A. Ogiwara, “Fault tolerance of a dynamic optically reconfigurable gate array with a one-time writable volume holographic memory,” in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2009) (IEEE, 2009), pp. 917–920.
[CrossRef]

A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.

Malcuit, M. S.

Minato, M.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Miyake, M.

A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.

Miyashiro, K.

T. Mabuchi, K. Miyashiro, M. Watanabe, and A. Ogiwara, “Fault tolerance of a dynamic optically reconfigurable gate array with a one-time writable volume holographic memory,” in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2009) (IEEE, 2009), pp. 917–920.
[CrossRef]

Mizuguchi, S.

A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
[CrossRef]

Nakajima, M.

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Ochi, Y.

A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.

Ogiwara, A.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
[CrossRef] [PubMed]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007).
[CrossRef]

A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
[CrossRef]

T. Mabuchi, K. Miyashiro, M. Watanabe, and A. Ogiwara, “Fault tolerance of a dynamic optically reconfigurable gate array with a one-time writable volume holographic memory,” in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2009) (IEEE, 2009), pp. 917–920.
[CrossRef]

A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.

Ono, H.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007).
[CrossRef]

Rodriguez, M. A.

Sanyal, S.

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599(1998).
[CrossRef]

Schnabel, B.

Seto, D.

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array—perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

Shepherd, C. K.

Siwecki, S. A.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003(2002).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Taketomi, Y.

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392(1997).
[CrossRef]

Takimoto, A.

A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
[CrossRef]

Tazawa, M.

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Urquhart, K.

Watanabe, M.

M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009).
[CrossRef] [PubMed]

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
[CrossRef] [PubMed]

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array—perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515(2006).
[CrossRef]

T. Mabuchi, K. Miyashiro, M. Watanabe, and A. Ogiwara, “Fault tolerance of a dynamic optically reconfigurable gate array with a one-time writable volume holographic memory,” in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2009) (IEEE, 2009), pp. 917–920.
[CrossRef]

A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.

Wu, S. T.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Wyrowski, F.

Yamaguchi, N.

Yoshimura, K.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

Yu, F.

Zeitner, U. D.

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array—perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

J. Appl. Phys. (2)

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

S. G. Cloutier, “Polarization holography: orthogonal plane-polarized beam configuration with circular vectorial photoinduced anisotropy,” J. Phys. D 38, 3371–3375 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (5)

M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515(2006).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346(2007).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
[CrossRef]

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392(1997).
[CrossRef]

K. Kato, T. Hisaki, and M. Date, “Alignment-controlled holographic polymer dispersed liquid crystal for reflective display devices,” Jpn. J. Appl. Phys. 38, 805–808 (1999).
[CrossRef]

Opt. Eng. (1)

S. Sanyal, P. Bandyopadhyay, and A. Ghosh, “Vector wave imagery using a birefringent lens,” Opt. Eng. 37, 592–599(1998).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. E (1)

M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
[CrossRef]

SID Symp. Dig. (1)

A. Ogiwara, Y. Kuratomi, T. Karasawa, A. Takimoto, and S. Mizuguchi, “PS polarization converting device for LC projector using holographic polymer-dispersed LC films,” SID Symp. Dig. 30, 1124–1127 (1999).
[CrossRef]

Other (2)

T. Mabuchi, K. Miyashiro, M. Watanabe, and A. Ogiwara, “Fault tolerance of a dynamic optically reconfigurable gate array with a one-time writable volume holographic memory,” in 2009 52nd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2009) (IEEE, 2009), pp. 917–920.
[CrossRef]

A. Ogiwara, Y. Ochi, M. Miyake, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of volume holographic memory using liquid-crystal composites for optically reconfigurable gate array,” in Proceedings of the 15th Microoptics Conference (Japan Society of Applied Physics, 2009), 194–195.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Overview of an ORGA comprising a gate-array VLSI, a holographic memory, and a laser diode array.

Fig. 2
Fig. 2

Defective area avoidance method on a gate array. It is assumed that a defective ORLB exists, as portrayed in the upper area at (a). The lower area of (b) shows that the defective area is avoided perfectly using parallel programming.

Fig. 3
Fig. 3

Optical setup for fabricating HPDLC memory using a laser interferometer with a photomask.

Fig. 4
Fig. 4

Mask pattern consisting of arrangements of circles with diameter of 20 μm and pitch of 90 μm .

Fig. 5
Fig. 5

Optical system for the configuration generation by reconstruction using HPDLC memory: (a) block diagram of the experimental system and (b) alignment of the HPDLC memory placed in front of the ORGA-VLSI.

Fig. 6
Fig. 6

Images of the holographic structure observed by the polarization modulation of LC composite gratings in holographic memory: (a) bright spots corresponding to circles in photomask, and (b) fringe pattern by magnification of bright region in (a). The image is observed at the crossed Nicole condition with polarizer (P) and analyzer (A) by a polarizing microscope when the grating vectors are placed at 45 ° with respect to the polarizer (P).

Fig. 7
Fig. 7

(a) Context pattern for AND circuit formed in a photomask. (b) Context image reconstructed by holographic memory generation.

Fig. 8
Fig. 8

Implementation results of an AND circuit. The AND circuit was configured and could be executed correctly as seen in the downside three signals, which are two input signals and one output signal of the AND circuit, respectively. The configuration period was measured as 9.375 μm .

Fig. 9
Fig. 9

Photograph of noise sheets of 1%, 5%, 10%, 15%, and 20% fabricated by writing the opaque points on a transparent sheets.

Fig. 10
Fig. 10

CCD-captured images of diffraction patterns of an AND circuit context against the ratio of applied impulse noise, such as (a) 0%, (b) 1%, (c) 5%, (d) 10%, (e) 15%, and (f) 20%.

Fig. 11
Fig. 11

Configuration time against the ratio of applied impulse noise.

Metrics