Abstract

Modeling a real laser diode stack based on Zemax ray tracing software that operates in a nonsequential mode is reported. The implementation of the model is presented together with the geometric and optical parameters to be adjusted to calibrate the model and to match the simulated intensity irradiance profiles with the experimental profiles. The calibration of the model is based on a near-field and a far-field measurement. The validation of the model has been accomplished by comparing the simulated and experimental transverse irradiance profiles at different positions along the caustic formed by a lens. Spot sizes and waist location are predicted with a maximum error below 6%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
    [CrossRef]
  2. F. Zhang, C. Wang, R. Geng, Z. Tong, T. Ning, and S. Jian, “Anamorphic beam concentrator for linear laser-diode bar,” Opt. Express 15, 17038–17043 (2007).
    [CrossRef] [PubMed]
  3. R. J. Koshel and I. A. Walmsley, “Modeling of the gain distribution for diode pumping of a solid-state laser rod with nonimaging optics,” Appl. Opt. 32, 1517–1527 (1993).
    [CrossRef] [PubMed]
  4. S. D. Jackson and J. A. Piper, “Theoretical modeling of a diode-pumped Nd:YAG laser with a solid nonfocusing pump light collector,” Appl. Opt. 33, 2273–2283 (1994).
    [CrossRef] [PubMed]
  5. Z. Fan, L. Chu, W. Chun-can, and J. Shui-sheng, “Beam concentration and homogenization for high power laser diode bar,” Opt. Commun. 281, 4406–4410 (2008).
    [CrossRef]
  6. L. Mi, S. L. Yao, Q. Li, and F. Gao1, “Shaping semiconductor laser beam with one-dimension gradient-index lens,” J. Phys.: Conf. Ser. 48, 785–789 (2006).
    [CrossRef]
  7. G. R. Hadley, A. Owyoung, P. Esherick, and J. P. Hohimer, “Numerical simulation and experimental studies of longitudinally excited miniature solid-state lasers,” Appl. Opt. 27, 819–827(1988).
    [CrossRef] [PubMed]
  8. R. Fu, G. Wang, Z. Wang, E. Ba, G. Mu, and X. Hu “Design of efficient lens ducts,” Appl. Opt. 37, 4000–4003 (1998).
    [CrossRef]
  9. Quantel Laser Diodes Data Sheet, “Conduction-cooled QCW Stacked Array,” (listing date 07/2009), http://www.quantel-diodes.com/media/produit/fichier/20_Dsmk8016_ed8_{QDQ1yzzABBSGK}.pdf, (downloaded 03/2010).
  10. Zemax User’s Guide (Zemax Development Corporation, 2007), pp. 369–370.
  11. A. Naqwi and F. Durst, “Focusing of diode laser beams: a simple mathematical model,” Appl. Opt. 29, 1780–1785 (1990).
    [CrossRef] [PubMed]
  12. “Lasers and laser-related equipment test methods for laser beam widths, divergence angles and beam propagation ratios. Part 1: stigmatic and simple astigmatic beams,” ISO Document 11146-1:2005 (International Standards Organization, 2005).
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Chaps. 4–5.
  14. A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, M.Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.
  15. D. Sands, Diode Lasers, Series in Optics and Optoelectronics(Taylor & Francis, 2004), Chap. 10.
    [CrossRef]
  16. Zemax User’s Guide (Zemax Development Corporation, 2007), Chaps. 12–14.

2008

Z. Fan, L. Chu, W. Chun-can, and J. Shui-sheng, “Beam concentration and homogenization for high power laser diode bar,” Opt. Commun. 281, 4406–4410 (2008).
[CrossRef]

2007

2006

L. Mi, S. L. Yao, Q. Li, and F. Gao1, “Shaping semiconductor laser beam with one-dimension gradient-index lens,” J. Phys.: Conf. Ser. 48, 785–789 (2006).
[CrossRef]

2000

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

1998

1994

1993

1990

1988

Ba, E.

Chu, L.

Z. Fan, L. Chu, W. Chun-can, and J. Shui-sheng, “Beam concentration and homogenization for high power laser diode bar,” Opt. Commun. 281, 4406–4410 (2008).
[CrossRef]

Chun-can, W.

Z. Fan, L. Chu, W. Chun-can, and J. Shui-sheng, “Beam concentration and homogenization for high power laser diode bar,” Opt. Commun. 281, 4406–4410 (2008).
[CrossRef]

Durst, F.

Esherick, P.

Fan, Z.

Z. Fan, L. Chu, W. Chun-can, and J. Shui-sheng, “Beam concentration and homogenization for high power laser diode bar,” Opt. Commun. 281, 4406–4410 (2008).
[CrossRef]

Fu, R.

Gao1, F.

L. Mi, S. L. Yao, Q. Li, and F. Gao1, “Shaping semiconductor laser beam with one-dimension gradient-index lens,” J. Phys.: Conf. Ser. 48, 785–789 (2006).
[CrossRef]

Geng, R.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Chaps. 4–5.

Hadley, G. R.

He, X.

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

Hohimer, J. P.

Hu, X.

Jackson, S. D.

Jian, S.

Kanskar, M.

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

Koshel, R. J.

Li, Q.

L. Mi, S. L. Yao, Q. Li, and F. Gao1, “Shaping semiconductor laser beam with one-dimension gradient-index lens,” J. Phys.: Conf. Ser. 48, 785–789 (2006).
[CrossRef]

Mi, L.

L. Mi, S. L. Yao, Q. Li, and F. Gao1, “Shaping semiconductor laser beam with one-dimension gradient-index lens,” J. Phys.: Conf. Ser. 48, 785–789 (2006).
[CrossRef]

Mott, J.

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

Mu, G.

Naqwi, A.

Nemes, G.

A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, M.Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.

Ning, T.

Ovtchinnikov, A.

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

Owyoung, A.

Piper, J. A.

Sands, D.

D. Sands, Diode Lasers, Series in Optics and Optoelectronics(Taylor & Francis, 2004), Chap. 10.
[CrossRef]

Serna, J.

A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, M.Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.

Shui-sheng, J.

Z. Fan, L. Chu, W. Chun-can, and J. Shui-sheng, “Beam concentration and homogenization for high power laser diode bar,” Opt. Commun. 281, 4406–4410 (2008).
[CrossRef]

Siegman, A. E.

A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, M.Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.

Tong, Z.

Treusch, H.-G.

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

Walmsley, I. A.

Wang, C.

Wang, G.

Wang, Z.

Yang, S.

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

Yao, S. L.

L. Mi, S. L. Yao, Q. Li, and F. Gao1, “Shaping semiconductor laser beam with one-dimension gradient-index lens,” J. Phys.: Conf. Ser. 48, 785–789 (2006).
[CrossRef]

Zhang, F.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

H.-G. Treusch, A. Ovtchinnikov, X. He, M. Kanskar, J. Mott, and S. Yang, “High-brightness semiconductor laser sources for materials processing: stacking, beam shaping, and bars,” IEEE J. Sel. Top. Quantum Electron. 6, 601–614 (2000).
[CrossRef]

J. Phys.: Conf. Ser.

L. Mi, S. L. Yao, Q. Li, and F. Gao1, “Shaping semiconductor laser beam with one-dimension gradient-index lens,” J. Phys.: Conf. Ser. 48, 785–789 (2006).
[CrossRef]

Opt. Commun.

Z. Fan, L. Chu, W. Chun-can, and J. Shui-sheng, “Beam concentration and homogenization for high power laser diode bar,” Opt. Commun. 281, 4406–4410 (2008).
[CrossRef]

Opt. Express

Other

Quantel Laser Diodes Data Sheet, “Conduction-cooled QCW Stacked Array,” (listing date 07/2009), http://www.quantel-diodes.com/media/produit/fichier/20_Dsmk8016_ed8_{QDQ1yzzABBSGK}.pdf, (downloaded 03/2010).

Zemax User’s Guide (Zemax Development Corporation, 2007), pp. 369–370.

“Lasers and laser-related equipment test methods for laser beam widths, divergence angles and beam propagation ratios. Part 1: stigmatic and simple astigmatic beams,” ISO Document 11146-1:2005 (International Standards Organization, 2005).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Chaps. 4–5.

A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in Diode Pumped Solid State Lasers: Applications and Issues, M.Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optical Society of America, 1998), paper MQ1.

D. Sands, Diode Lasers, Series in Optics and Optoelectronics(Taylor & Francis, 2004), Chap. 10.
[CrossRef]

Zemax User’s Guide (Zemax Development Corporation, 2007), Chaps. 12–14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Detail of the bars of emitters.

Fig. 2
Fig. 2

(a) Experimental near-field profile of the laser diode stack and (b) computed emitter powers.

Fig. 3
Fig. 3

(a) SA view and (b) FA view of the beam generated by the laser diode stack

Fig. 4
Fig. 4

Detail of the collimating cylindrical microlenses.

Fig. 5
Fig. 5

Distributions of energy of the undersampled far field among (a) columns and (d) rows. (b) Experimental far-field irradiance profile of the Quantel laser diode stack. (c) Preprocessed far-field profile for calibration of the Zemax model.

Fig. 6
Fig. 6

Experimental setup for near-field measurements: LD, laser diode; Fl, 30 mm focal length lens (Thorlabs Model LB1757); F2, 19 mm focal length lens (Newport Model KBX043); C, CCD camera (Coherent Model LaserCam-HR, 8.5 mm × 6.8 mm active area with a resolution of 1280 × 1024 ).

Fig. 7
Fig. 7

Experimental setup for far-field measurements: Fl, 30 mm effective focal length lens, BFL, back focal length including ND4 filter (Thorlabs Model LB1757).

Fig. 8
Fig. 8

(a) Experimental and (b) simulated near field of the Quantel laser diode stack.

Fig. 9
Fig. 9

(a) Experimental and (b) simulated far field of the Quantel laser diode stack.

Fig. 10
Fig. 10

Z-scan experimental setup: F, 25.4 mm focal length lens (Newport Model KBX046).

Fig. 11
Fig. 11

Experimental (left) and simulated (right) irradiance profiles of the Quantel stack at sections z = 0 , 8, 16, 22 mm . The origin of the z axis is located at 16 mm from the rear surface of the focusing lens.

Fig. 12
Fig. 12

D4-sigma width and percentage error along the SA (left) and FA (right) of the experimental and simulated profiles. The origin of the z axis is located at 16 mm from the rear surface of the focusing lens.

Fig. 13
Fig. 13

Screenshot of the Zemax nonsequential component editor showing implementation of the diode stack and far-field experimental setup.

Fig. 14
Fig. 14

Screenshot of the Zemax Merit Function Editor showing the custom merit function implemented for far-field calibration.

Tables (2)

Tables Icon

Table 1 Characteristics of the Quantel QD-Q1312-B Diode Stack [9]

Tables Icon

Table 2 Experimental and Simulated SA and FA d4-sigma Divergences

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( φ x , φ y ) = I ( 0 , 0 ) e 2 [ ( φ x α x ) 2 G x + ( φ y α y ) 2 G y ] ,
F ( x , y ) = F ( 0 , 0 ) e 2 [ ( x w x ) 2 H x + ( y w y ) 2 H y ] ,

Metrics