Abstract

Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh–Brillouin scattering measurements in the ultraviolet at a scattering angle of 90° on N2 and on dry and moist air. The measured line shapes are compared to the Tenti S6 model, which is shown to describe the scattering line shapes in air at atmospheric pressures with small but significant deviations. We demonstrate that the line profiles of N2 and air under equal pressure and temperature conditions differ significantly, and that this difference can be described by the S6 model. Moreover, we show that even a high water vapor content in air up to a volume fraction of 3.6 vol.% has no influence on the line shape of the scattered light. The results are of relevance for the future spaceborne lidars on ADM-Aeolus (Atmospheric Dynamics Mission) and EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535(1981).
    [CrossRef] [PubMed]
  2. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
    [CrossRef]
  3. C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
    [CrossRef]
  4. G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
    [CrossRef]
  5. B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009).
    [CrossRef] [PubMed]
  6. European Space Agency, “Earth Clouds, Aerosols, and Radiation Explorer,” ESA SP-1279(1) (European Space Research and Technology Centre, 2004).
  7. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
    [CrossRef]
  8. P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).
  9. European Space Agency, “ADM-Aeolus," science report, ESA SP-1311 (European Space Research and Technology Centre, 2008).
  10. A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
    [CrossRef]
  11. D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
    [CrossRef]
  12. N. Cezard, A. Dolfi-Bouteyre, J. Huignard, and P. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355nm Rayleigh-Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
    [CrossRef] [PubMed]
  13. C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972).
    [CrossRef]
  14. G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  15. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
    [CrossRef] [PubMed]
  16. J. Hair, L. Caldwell, D. Krueger, and C. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
    [CrossRef]
  17. J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
    [CrossRef] [PubMed]
  18. B. J. Rye, “Molecular backscatter heterodyne lidar: a computational evaluation,” Appl. Opt. 37, 6321–6328 (1998).
    [CrossRef]
  19. A. T. Young and G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983).
    [CrossRef] [PubMed]
  20. T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
    [CrossRef]
  21. E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh-Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
    [CrossRef]
  22. R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
    [CrossRef]
  23. J. A. Lock, R. G. Seasholtz, and W. T. John, “Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31, 2839–2848 (1992).
    [CrossRef] [PubMed]
  24. Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
    [CrossRef]
  25. V. Ghaem-Maghami and A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
    [CrossRef]
  26. L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
    [CrossRef]
  27. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
    [CrossRef] [PubMed]
  28. X. Pan, N. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
    [CrossRef]
  29. A. Sugawara and S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
    [CrossRef]
  30. H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound—update,” J. Acoust. Soc. Am. 88, 2019–2021 (1990).
    [CrossRef]
  31. H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W.P.Mason and R.N.Thurston, eds. (Academic, 1984), Vol. 17, pp. 145–232.
  32. O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009).
    [CrossRef]
  33. B. M. Gentry, H. Chen, and S. X. Li, “Wind measurements with 355nm molecular Doppler lidar,” Opt. Lett. 25, 1231–1233(2000).
    [CrossRef]
  34. L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).
  35. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980).
  36. “U.S. standard atmosphere” (U.S. Government Printing Office, 1962).
  37. T. Gombosi, Gaskinetic Theory (Cambridge Univ. Press, 1994).
    [CrossRef]
  38. N. Taxman, “Classical theory of transport phenomena in dilute polyatomic gases,” Phys. Rev. 110, 1235–1239 (1958).
    [CrossRef]
  39. C. S. Wang-Chang, G. E. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical Mechanics, J.de Boer and G.E.Uhlenbeck, eds. (North-Holland, 1964), pp. 242–268.
  40. R. F. Snider, “Quantum-mechanical modified Boltzmann equation for degenerate internal states,” J. Chem. Phys. 32, 1051–1060 (1960).
    [CrossRef]
  41. W. E. Meador, G. A. Mines, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: fact or fiction?,” Phys. Fluids 8, 258–261 (1996).
    [CrossRef]
  42. R. E. Graves and B. M. Argow, “Bulk viscosity: past to present,” J. Thermophys. Heat Transfer 13, 337–342 (1999).
    [CrossRef]
  43. W. A. Wakeham, “Transport properties of polyatomic gases,” Int. J. Thermophys. 7, 1–15 (1986).
    [CrossRef]
  44. G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2, 2252–2254 (1990).
    [CrossRef]
  45. G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K,” Physica 64, 278–288 (1973).
    [CrossRef]
  46. K. Rah and B. C. Eu, “Density and temperature dependence of the bulk viscosity of molecular liquids: carbon dioxide and nitrogen,” J. Chem. Phys. 114, 10436–10447 (2001).
    [CrossRef]
  47. W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).
  48. M. O. Vieitez, E.-J.van Duijn, W.van de Water, and W.Ubachs are preparing a manuscript to be called “A UV laser based spectrometer for measuring spontaneous Rayleigh-Brillouin scattering.”
  49. G. Hernandez, Fabry-Perot Interferometers (Cambridge Univ. Press, 1988).
  50. J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, 1989).
  51. W. van de Water, A.S.Meijer, A.S.de Wijn, M.Peters, and N.J.Dam, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. (to be published).
  52. T.D.Rossing, ed., Springer Handbook of Acoustics (Springer, 2007).
    [CrossRef]
  53. D.R.Lide, ed., CRC Handbook of Chemistry and Physics, 82th ed. (CRC, 2002).
  54. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
    [CrossRef]
  55. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
    [CrossRef] [PubMed]
  56. M. McGill, W. Skinner, and T. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1932 (1997).
    [CrossRef] [PubMed]
  57. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
    [CrossRef] [PubMed]
  58. J. R. Bonatto and W. Marquez, “Kinetic model analysis of light scattering in binary mixtures of monoatomic ideal gases,” J. Stat. Mech. 9, 09014 (2005).
    [CrossRef]
  59. W. van de Water, M.O.Vieitez, E.-J.van Duijn, W.Ubachs, A.Meijer, A.S.de Wijn, N.J.Dam, and B.Witschas, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases, and gas mixtures,” Phys. Rev. A (to be published).

2009 (4)

B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009).
[CrossRef] [PubMed]

N. Cezard, A. Dolfi-Bouteyre, J. Huignard, and P. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355nm Rayleigh-Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[CrossRef] [PubMed]

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

2008 (4)

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef] [PubMed]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (3)

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
[CrossRef] [PubMed]

J. R. Bonatto and W. Marquez, “Kinetic model analysis of light scattering in binary mixtures of monoatomic ideal gases,” J. Stat. Mech. 9, 09014 (2005).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

2004 (1)

X. Pan, N. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

2002 (1)

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

2001 (4)

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

J. Hair, L. Caldwell, D. Krueger, and C. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

K. Rah and B. C. Eu, “Density and temperature dependence of the bulk viscosity of molecular liquids: carbon dioxide and nitrogen,” J. Chem. Phys. 114, 10436–10447 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. E. Graves and B. M. Argow, “Bulk viscosity: past to present,” J. Thermophys. Heat Transfer 13, 337–342 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

W. E. Meador, G. A. Mines, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: fact or fiction?,” Phys. Fluids 8, 258–261 (1996).
[CrossRef]

1992 (1)

1990 (2)

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2, 2252–2254 (1990).
[CrossRef]

H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound—update,” J. Acoust. Soc. Am. 88, 2019–2021 (1990).
[CrossRef]

1986 (1)

W. A. Wakeham, “Transport properties of polyatomic gases,” Int. J. Thermophys. 7, 1–15 (1986).
[CrossRef]

1983 (1)

1981 (2)

A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535(1981).
[CrossRef] [PubMed]

L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
[CrossRef]

1980 (1)

V. Ghaem-Maghami and A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

1976 (2)

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

1974 (1)

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

1973 (1)

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K,” Physica 64, 278–288 (1973).
[CrossRef]

1972 (1)

C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

1971 (1)

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh-Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

1968 (1)

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

1967 (1)

A. Sugawara and S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

1966 (1)

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

1960 (1)

R. F. Snider, “Quantum-mechanical modified Boltzmann equation for degenerate internal states,” J. Chem. Phys. 32, 1051–1060 (1960).
[CrossRef]

1958 (1)

N. Taxman, “Classical theory of transport phenomena in dilute polyatomic gases,” Phys. Rev. 110, 1235–1239 (1958).
[CrossRef]

Aben, E. A. A.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Alberga, A. H.

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K,” Physica 64, 278–288 (1973).
[CrossRef]

Andersson, E.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Ansmann, A.

Argow, B. M.

R. E. Graves and B. M. Argow, “Bulk viscosity: past to present,” J. Thermophys. Heat Transfer 13, 337–342 (1999).
[CrossRef]

Armstrong, R. L.

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Bass, H. E.

H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound—update,” J. Acoust. Soc. Am. 88, 2019–2021 (1990).
[CrossRef]

H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W.P.Mason and R.N.Thurston, eds. (Academic, 1984), Vol. 17, pp. 145–232.

Beenakker, J. J. M.

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K,” Physica 64, 278–288 (1973).
[CrossRef]

Benedek, G. B.

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Bi, D. B.

Boley, C.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Boley, C. D.

C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

Bonatto, J. R.

J. R. Bonatto and W. Marquez, “Kinetic model analysis of light scattering in binary mixtures of monoatomic ideal gases,” J. Stat. Mech. 9, 09014 (2005).
[CrossRef]

Boon, J. P.

J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980).

Caldwell, L.

Cezard, N.

Chabrat, J. P.

L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
[CrossRef]

Chen, H.

Chu, B.

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Cook, A.

Culoma, A.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Dabas, A.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).

Dam, N.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

de Boer, J.

C. S. Wang-Chang, G. E. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical Mechanics, J.de Boer and G.E.Uhlenbeck, eds. (North-Holland, 1964), pp. 242–268.

De Kloe, J.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Denneulin, M.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

Denneulin, M. L.

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).

Denneulin, M.-L.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

Desai, R.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

Desai, R. C.

C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

DeWolf, B. J.

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

Dolfi-Bouteyre, A.

N. Cezard, A. Dolfi-Bouteyre, J. Huignard, and P. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355nm Rayleigh-Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[CrossRef] [PubMed]

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).

Ehret, G.

Emanuel, G.

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2, 2252–2254 (1990).
[CrossRef]

Endemann, M.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Esselborn, M.

Eu, B. C.

K. Rah and B. C. Eu, “Density and temperature dependence of the bulk viscosity of molecular liquids: carbon dioxide and nitrogen,” J. Chem. Phys. 114, 10436–10447 (2001).
[CrossRef]

Evans, L.

H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W.P.Mason and R.N.Thurston, eds. (Academic, 1984), Vol. 17, pp. 145–232.

Fabelinski, L.

L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).

Ferrare, R.

Fiocco, G.

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

Fix, A.

Flamant, P.

N. Cezard, A. Dolfi-Bouteyre, J. Huignard, and P. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355nm Rayleigh-Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[CrossRef] [PubMed]

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Flamant, P. H.

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Freudenthaler, V.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

Garnier, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).

Gentry, B. M.

Ghaem-Maghami, V.

V. Ghaem-Maghami and A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

Gombosi, T.

T. Gombosi, Gaskinetic Theory (Cambridge Univ. Press, 1994).
[CrossRef]

Graves, R. E.

R. E. Graves and B. M. Argow, “Bulk viscosity: past to present,” J. Thermophys. Heat Transfer 13, 337–342 (1999).
[CrossRef]

Greytak, T. J.

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Hair, J.

Hara, E. H.

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh-Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Harper, D.

Hernandez, G.

G. Hernandez, Fabry-Perot Interferometers (Cambridge Univ. Press, 1988).

Hostetler, C.

Hovis, F.

Hua, D.

Huber, D.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

Huignard, J.

Ingmann, P.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Irgang, T.

Isaksen, L.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Izquierdo, L.

John, W. T.

Kaellen, E.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Kattawar, G. W.

Knapp, H. F. P.

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh-Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Kobayashi, T.

Krueger, D.

Lajas, D.

Lao, Q. H.

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Le Rille, O.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
[CrossRef] [PubMed]

Lemmerz, C.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009).
[CrossRef]

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Letamendia, L.

L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
[CrossRef]

Li, S. X.

Liu, B. Y.

Lock, J. A.

Loth, C.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

Mack, T.

Marquez, W.

J. R. Bonatto and W. Marquez, “Kinetic model analysis of light scattering in binary mixtures of monoatomic ideal gases,” J. Stat. Mech. 9, 09014 (2005).
[CrossRef]

Marseille, G.-J.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

May, A. D.

V. Ghaem-Maghami and A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh-Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

McGill, M.

Meador, W. E.

W. E. Meador, G. A. Mines, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: fact or fiction?,” Phys. Fluids 8, 258–261 (1996).
[CrossRef]

Meijer, A. S.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Meynart, R.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Miles, R.

X. Pan, N. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

Miles, R. B.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Mines, G. A.

W. E. Meador, G. A. Mines, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: fact or fiction?,” Phys. Fluids 8, 258–261 (1996).
[CrossRef]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009).
[CrossRef]

Nett, H.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

Nikolaus, I.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

Nouchi, G.

L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
[CrossRef]

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

Pailleux, J.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Pan, X.

X. Pan, N. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

Piercy, J.

H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W.P.Mason and R.N.Thurston, eds. (Academic, 1984), Vol. 17, pp. 145–232.

Poli, P.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

Prangsma, G. J.

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K,” Physica 64, 278–288 (1973).
[CrossRef]

Rah, K.

K. Rah and B. C. Eu, “Density and temperature dependence of the bulk viscosity of molecular liquids: carbon dioxide and nitrogen,” J. Chem. Phys. 114, 10436–10447 (2001).
[CrossRef]

Rees, D.

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).

Reitebuch, O.

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

Rouch, J.

L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
[CrossRef]

Rye, B. J.

Sandoval, R. P.

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

Schoen, P. E.

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

Schyberg, H.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Seasholtz, R. G.

She, C.

She, C. Y.

Shneider, M. N.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

Shneider, N.

X. Pan, N. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

Skinner, W.

Snider, R. F.

R. F. Snider, “Quantum-mechanical modified Boltzmann equation for degenerate internal states,” J. Chem. Phys. 32, 1051–1060 (1960).
[CrossRef]

Stoffelen, A.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Straume, A.

Sugawara, A.

A. Sugawara and S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

Sutherland, L. C.

H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound—update,” J. Acoust. Soc. Am. 88, 2019–2021 (1990).
[CrossRef]

H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W.P.Mason and R.N.Thurston, eds. (Academic, 1984), Vol. 17, pp. 145–232.

Tan, D. G. H.

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

Taxman, N.

N. Taxman, “Classical theory of transport phenomena in dilute polyatomic gases,” Phys. Rev. 110, 1235–1239 (1958).
[CrossRef]

Tenti, G.

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

ter Meulen, J. J.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Tesche, M.

Townsend, L. W.

W. E. Meador, G. A. Mines, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: fact or fiction?,” Phys. Fluids 8, 258–261 (1996).
[CrossRef]

Ubachs, W.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Uchida, M.

Uhlenbeck, G. E.

C. S. Wang-Chang, G. E. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical Mechanics, J.de Boer and G.E.Uhlenbeck, eds. (North-Holland, 1964), pp. 242–268.

van de Water, W.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

W. van de Water, M.O.Vieitez, E.-J.van Duijn, W.Ubachs, A.Meijer, A.S.de Wijn, N.J.Dam, and B.Witschas, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases, and gas mixtures,” Phys. Rev. A (to be published).

W. van de Water, A.S.Meijer, A.S.de Wijn, M.Peters, and N.J.Dam, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. (to be published).

van Duijn, E.-J.

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Vaucamps, C.

L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
[CrossRef]

Vaughan, J. M.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, 1989).

Vieitez, M. O.

M. O. Vieitez, E.-J.van Duijn, W.van de Water, and W.Ubachs are preparing a manuscript to be called “A UV laser based spectrometer for measuring spontaneous Rayleigh-Brillouin scattering.”

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

Wakeham, W. A.

W. A. Wakeham, “Transport properties of polyatomic gases,” Int. J. Thermophys. 7, 1–15 (1986).
[CrossRef]

Wandinger, U.

Wang-Chang, C. S.

C. S. Wang-Chang, G. E. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical Mechanics, J.de Boer and G.E.Uhlenbeck, eds. (North-Holland, 1964), pp. 242–268.

Welch, W.

Wergen, W.

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Wirth, M.

Witschas, B.

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

Yip, S.

A. Sugawara and S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980).

Young, A. T.

Zuckerwar, A. J.

H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound—update,” J. Acoust. Soc. Am. 88, 2019–2021 (1990).
[CrossRef]

Appl. Opt. (13)

A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535(1981).
[CrossRef] [PubMed]

C. Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875–4884 (2001).
[CrossRef]

B. Y. Liu, M. Esselborn, M. Wirth, A. Fix, D. B. Bi, and G. Ehret, “Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar,” Appl. Opt. 48, 5143–5153 (2009).
[CrossRef] [PubMed]

N. Cezard, A. Dolfi-Bouteyre, J. Huignard, and P. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355nm Rayleigh-Mie lidar,” Appl. Opt. 48, 2321–2332 (2009).
[CrossRef] [PubMed]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (2008).
[CrossRef] [PubMed]

J. Hair, L. Caldwell, D. Krueger, and C. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280–5294 (2001).
[CrossRef]

J. Hair, C. Hostetler, A. Cook, D. Harper, R. Ferrare, T. Mack, W. Welch, L. Izquierdo, and F. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
[CrossRef] [PubMed]

B. J. Rye, “Molecular backscatter heterodyne lidar: a computational evaluation,” Appl. Opt. 37, 6321–6328 (1998).
[CrossRef]

A. T. Young and G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983).
[CrossRef] [PubMed]

J. A. Lock, R. G. Seasholtz, and W. T. John, “Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field,” Appl. Opt. 31, 2839–2848 (1992).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007).
[CrossRef] [PubMed]

M. McGill, W. Skinner, and T. Irgang, “Validation of wind profiles measured with incoherent Doppler lidar,” Appl. Opt. 36, 1928–1932 (1997).
[CrossRef] [PubMed]

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44, 1315–1322 (2005).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (1)

A. Stoffelen, J. Pailleux, E. Kaellen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The Atmospheric Dynamics Mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86, 73–87 (2005).
[CrossRef]

Can. J. Phys. (3)

C. D. Boley, R. C. Desai, and G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

G. Tenti, C. Boley, and R. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).

E. H. Hara, A. D. May, and H. F. P. Knapp, “Rayleigh-Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971).
[CrossRef]

Int. J. Thermophys. (1)

W. A. Wakeham, “Transport properties of polyatomic gases,” Int. J. Thermophys. 7, 1–15 (1986).
[CrossRef]

J. Acoust. Soc. Am. (1)

H. E. Bass, L. C. Sutherland, and A. J. Zuckerwar, “Atmospheric absorption of sound—update,” J. Acoust. Soc. Am. 88, 2019–2021 (1990).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

O. Reitebuch, C. Lemmerz, E. Nagel, and U. Paffrath, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Oceanic Technol. 26, 2501–2515 (2009).
[CrossRef]

U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, “The airborne demonstrator for the direct-detection Doppler wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh receiver radiometric performance,” J. Atmos. Oceanic Technol. 26, 2516–2530 (2009).
[CrossRef]

J. Atmos. Sci. (1)

G. Fiocco and B. J. DeWolf, “Frequency spectrum of laser echoes from atmospheric constituents and determination of the aerosol content of air,” J. Atmos. Sci. 25, 488–496 (1968).
[CrossRef]

J. Chem. Phys. (3)

Q. H. Lao, P. E. Schoen, and B. Chu, “Rayleigh-Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976).
[CrossRef]

R. F. Snider, “Quantum-mechanical modified Boltzmann equation for degenerate internal states,” J. Chem. Phys. 32, 1051–1060 (1960).
[CrossRef]

K. Rah and B. C. Eu, “Density and temperature dependence of the bulk viscosity of molecular liquids: carbon dioxide and nitrogen,” J. Chem. Phys. 114, 10436–10447 (2001).
[CrossRef]

J. Stat. Mech. (1)

J. R. Bonatto and W. Marquez, “Kinetic model analysis of light scattering in binary mixtures of monoatomic ideal gases,” J. Stat. Mech. 9, 09014 (2005).
[CrossRef]

J. Thermophys. Heat Transfer (1)

R. E. Graves and B. M. Argow, “Bulk viscosity: past to present,” J. Thermophys. Heat Transfer 13, 337–342 (1999).
[CrossRef]

Meas. Sci. Technol. (1)

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12, R33–R51 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids (2)

A. Sugawara and S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967).
[CrossRef]

W. E. Meador, G. A. Mines, and L. W. Townsend, “Bulk viscosity as a relaxation parameter: fact or fiction?,” Phys. Fluids 8, 258–261 (1996).
[CrossRef]

Phys. Fluids A (1)

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids A 2, 2252–2254 (1990).
[CrossRef]

Phys. Rev. (1)

N. Taxman, “Classical theory of transport phenomena in dilute polyatomic gases,” Phys. Rev. 110, 1235–1239 (1958).
[CrossRef]

Phys. Rev. A (4)

X. Pan, N. Shneider, and R. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69, 033814 (2004).
[CrossRef]

R. P. Sandoval and R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976).
[CrossRef]

V. Ghaem-Maghami and A. D. May, “Rayleigh-Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980).
[CrossRef]

L. Letamendia, J. P. Chabrat, G. Nouchi, J. Rouch, and C. Vaucamps, “Light-scattering studies of moderately dense gas mixtures: hydrodynamic regime,” Phys. Rev. A 24, 1574–1590 (1981).
[CrossRef]

Phys. Rev. Lett. (2)

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89, 183001 (2002).
[CrossRef] [PubMed]

T. J. Greytak and G. B. Benedek, “Spectrum of light from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966).
[CrossRef]

Physica (1)

G. J. Prangsma, A. H. Alberga, and J. J. M. Beenakker, “Ultrasonic determination of the volume viscosity of N2, CO, CH4, and CD4 between 77 and 300K,” Physica 64, 278–288 (1973).
[CrossRef]

Tellus Ser. A (2)

D. G. H. Tan, E. Andersson, J. De Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M.-L. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus Ser. A 60, 191–205 (2008).
[CrossRef]

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus Ser. A 60, 206–215 (2008).
[CrossRef]

Other (17)

P. H. Flamant, A. Dabas, M. L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, “ILIAD: impact of line shape on ADM-Aeolus Doppler estimates,” ESA Contract Final Report 1833404/NL/MM (ESTEC, 2005).

European Space Agency, “ADM-Aeolus," science report, ESA SP-1311 (European Space Research and Technology Centre, 2008).

European Space Agency, “Earth Clouds, Aerosols, and Radiation Explorer,” ESA SP-1279(1) (European Space Research and Technology Centre, 2004).

C. S. Wang-Chang, G. E. Uhlenbeck, and J. de Boer, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical Mechanics, J.de Boer and G.E.Uhlenbeck, eds. (North-Holland, 1964), pp. 242–268.

H. E. Bass, L. C. Sutherland, J. Piercy, and L. Evans, “Absorption of sound by the atmosphere,” in Physical Acoustics, W.P.Mason and R.N.Thurston, eds. (Academic, 1984), Vol. 17, pp. 145–232.

L. Fabelinski, The Molecular Scattering of Light (Plenum, 1968).

J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980).

“U.S. standard atmosphere” (U.S. Government Printing Office, 1962).

T. Gombosi, Gaskinetic Theory (Cambridge Univ. Press, 1994).
[CrossRef]

W. van de Water, M.O.Vieitez, E.-J.van Duijn, W.Ubachs, A.Meijer, A.S.de Wijn, N.J.Dam, and B.Witschas, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases, and gas mixtures,” Phys. Rev. A (to be published).

W. Ubachs, E.-J. van Duijn, M. O. Vieitez, W. van de Water, N. Dam, J. J. ter Meulen, A. S. Meijer, J. de Kloe, A. Stoffelen, and E. A. A. Aben, “A spontaneous Rayleigh-Brillouin scattering experiment for the characterization of atmospheric lidar backscatter,” ESA Contract Final Report 1-5467/07/NL/HE (ESTEC, 2009).

M. O. Vieitez, E.-J.van Duijn, W.van de Water, and W.Ubachs are preparing a manuscript to be called “A UV laser based spectrometer for measuring spontaneous Rayleigh-Brillouin scattering.”

G. Hernandez, Fabry-Perot Interferometers (Cambridge Univ. Press, 1988).

J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, 1989).

W. van de Water, A.S.Meijer, A.S.de Wijn, M.Peters, and N.J.Dam, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. (to be published).

T.D.Rossing, ed., Springer Handbook of Acoustics (Springer, 2007).
[CrossRef]

D.R.Lide, ed., CRC Handbook of Chemistry and Physics, 82th ed. (CRC, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Line shapes of SRB scattered light according to the Tenti S6 model (wavelength λ = 366.5 nm , scattering angle θ = 90 ° ) in nitrogen for different scattering regimes. The black curve is representative for the Knudsen regime ( y = 0 , for p 0 hPa , T = 293 K ), the dashed black curve for the kinetic regime ( y = 0.56 , for p = 1000 hPa , T = 293 K ), and the gray curve for the hydrodynamic regime ( y = 5.6 , for p = 10000 hPa , T = 293 K ). Curves are normalized to yield unity integrated intensity. The gas transport parameters of nitrogen that are used for simulation can be found in Table 1.

Fig. 2
Fig. 2

Bulk viscosity η b of dry (dashed line) and water-saturated (solid line) air as a function of frequency. The lines represent an empirical formula that is based on sound absorption measurements with sound frequencies up to 10 5 Hz [31].

Fig. 3
Fig. 3

Schematic diagram of the experimental setup. The UV laser beam (thick solid line), emitted from the laser source (LS), is reflected several times in the enhancement cavity (EC) to increase the scattering intensity. A reference beam (dashed line), split off of the main beam, is used for detector alignment. The in the scattering cell (SC) scattered light (thin solid line) is detected at 90 ° using a pinhole, a Fabry–Perot interferometer (FPI), and a photomultiplier (PMT).

Fig. 4
Fig. 4

Transmission curve of the hemispherical FPI versus frequency, obtained with the narrowband reference laser and scanning of the FPI plate separation (black dots), showing three complete free spectral ranges Γ FSR and details of the instrument function (inset). The gray line represents the best fit of Eq. (3) to the measurement.

Fig. 5
Fig. 5

Measured spontaneous Rayleigh–Brillouin scattering spectra (gray dots) in N 2 (left) and air (right) compared with the S6 model using the transport coefficients in Table 1. Measurement and model are normalized to equal area as described in Section 3. (a) N 2 , 2000 hPa , χ 2 = 5 . (b) air, 2000 hPa , χ 2 = 9 . (c) N 2 , 3000 hPa , χ 2 = 7 . (d) air, 3000 hPa , χ 2 = 4 . The spectra at 3000 hPa were used to determine the bulk viscosity. Significant discrepancies exist between the Tenti S6 model and the measured spectra for N 2 at 3000 hPa and for air at 2000 hPa . The exact measurement conditions can be found in Table 2.

Fig. 6
Fig. 6

Normalized difference between measured and modeled SRB line profiles of N 2 and air. Plotted is Δ ( f i ) [see Eq. (5)] (a) at a pressure of 300 hPa , mean χ 2 = 1.7 and (b) at 2000 hPa , mean χ 2 = 6.2 . The right vertical axes give the deviation in percentages; outside the shaded area χ 2 > 1 .

Fig. 7
Fig. 7

Measured spontaneous Rayleigh–Brillouin spectra in air (gray dots), compared to the S6 model (full line) and the Rayleigh distribution (dashed line) at pressures of (a) p = 300 , (b) 500, and (c) 1000 hPa . The difference between measurement and S6 model (black) and measurement and Rayleigh distribution (gray) as a percentage deviation compared to the intensity at Δ f = 0 is shown below each graph. For the Tenti S6 model, the normalized differences between experiment and model are (a) χ 2 = 2.0 , (b) 2.5, and (c) 3.7. For the Rayleigh distribution, these differences become (a) χ 2 = 2.6 , (b) 7.6, and (c) 50. The detailed measurement conditions can be found in Table 2.

Fig. 8
Fig. 8

(a) Measured spectrum of dry air compared to the Tenti S6 model ( T = 299.4 K , p = 1040 hPa , θ = 90.6 ° ). The difference between model and data is expressed by χ 2 = 3.1 . (b) Measured spectrum of water saturated air compared to the Tenti S6 model ( T = 301.0 K , p = 1040 hPa , θ = 90.6 ° ). The difference between model and data is expressed by χ 2 = 2.7 . The difference between model and measurement as a percentage deviation compared to the intensity at Δ f = 0 is shown below (a) and (b), respectively. (c) Normalized difference Δ between measured spectra of (a) and (b), with the mean squared difference χ 2 = 1.7 ; outside the shaded area χ 2 > 1 . The right vertical axis indicates the percentage difference.

Tables (2)

Tables Icon

Table 1 Gas Transport Coefficients Used for S6 Model Calculations

Tables Icon

Table 2 Measurement Conditions and y Parameter for the SRB Experiments a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y = p k v 0 η = n k B T k v 0 η ,
I ( k , ω ) = 2 π 1 / 2 k v 0 e ( ω / k v 0 ) 2 .
T ( f ) = I 0 [ 1 + ( 2 Γ FSR π Δ f FWHM ) sin 2 ( π Γ FSR f ) ] 1 ,
χ 2 = ( 1 / N ) i = 1 N I e ( f i ) I m ( f i ) ) 2 σ 2 ( f i ) ,
Δ ( f i ) = I N 2 ( f i ) I air ( f i ) ( σ N 2 ( f i ) 2 + σ air ( f i ) 2 ) 1 / 2 ,

Metrics