Abstract

We synthesized a violet-blue phosphor Ba2AlB4O9Cl:Eu2+ with a solid-state reaction. The excitation and emission spectra of this phosphor showed that all were broadband due to 4f74f6d1 transitions of Eu2+. The phosphors with different Eu2+ concentrations presented violet-blue luminescence for ultraviolet [(UV) 250390nm] excitation. The optimum concentration of Eu2+ in Ba2AlB4O9Cl:Eu2+ is determined to be 6mol.%. The luminous efficiency was found to be 8.1lm/W for the violet-blue fluorescent lamp and 3.2lm/W for the violet-blue phosphor-converted light-emitting diode, respectively. Ba2AlB4O9Cl:Eu2+ would be a promising phosphor for converting the UV radiation to violet-blue emission for a novel high light-conversion efficiency phototherapy illuminator.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Shionoya and W. M. Yen, Phosphor Handbook (CRC, 1999), pp. 391–432.
  2. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7, 1547–1551 (1995).
    [Crossref]
  3. T. W. Kuo, W. R. Liu, and T. M. Chen, “Emission color variation of (Ba,Sr)3BP3O12:Eu2+ phosphors for white light LEDs,” Opt. Express 18, 1888–1897 (2010).
    [Crossref] [PubMed]
  4. T. W. Kuo, W. R. Liu, and T. M. Chen, “High color rendering white light-emitting-diode illuminator using the red-emitting Eu2+-activated CaZnOS phosphors excited by blue LED,” Opt. Express 18, 8187–8192 (2010).
    [Crossref] [PubMed]
  5. R. M. MacKie, “Effects of ultraviolet radiation on human health,” Radiat. Prot. Dosim. 91, 15–18 (2000).
  6. R. C. Ropp, Luminescence and the Solid State (Elsevier, 1991).
  7. A. Vecht, A. C. Newport, P. A. Bayley, and W. A. Crossland, “Narrow band 390nm emitting phosphors for photoluminescent liquid crystal displays,” J. Appl. Phys. 84, 3827–3829(1998).
    [Crossref]
  8. D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
    [Crossref]
  9. J. H. Wilkens and R. Stirne, “Irradiation device for therapeutic treatment of skin and other ailments,” U.S. patent 6,902,563 (7 June 2005).
  10. C. Bolta, “Balanced blue spectrum therapy lighting,” U.S. patent 7,015,636 (21 March 2006).
  11. J. Barbier, “The non-centrosymmetric borate chlorides Ba2TB4O9Cl (T=Al, Ga),” Solid State Sci. 9, 344–350 (2007).
    [Crossref]
  12. J. L. Sommerdijk, J. M. P. J. Verstegen, and A. Bril, “Luminescence of MeFX:Eu2+ (Me=Sr, Ba; X=Cl, Br),” J. Lumin. 8, 502–506 (1974).
    [Crossref]
  13. R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
    [Crossref]
  14. G. Blasse, W. L. Wanmaker, J. W. Ter Vruggt, and A. Bril, “Flourescence of Eu2+-activated silicates,” Philips Res. Rep. 23, 189–200 (1968).
  15. G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).
  16. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).
  17. L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
    [Crossref]
  18. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [Crossref]
  19. W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
    [Crossref]

2010 (2)

2007 (1)

J. Barbier, “The non-centrosymmetric borate chlorides Ba2TB4O9Cl (T=Al, Ga),” Solid State Sci. 9, 344–350 (2007).
[Crossref]

2005 (1)

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

2004 (1)

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

2000 (1)

R. M. MacKie, “Effects of ultraviolet radiation on human health,” Radiat. Prot. Dosim. 91, 15–18 (2000).

1998 (1)

A. Vecht, A. C. Newport, P. A. Bayley, and W. A. Crossland, “Narrow band 390nm emitting phosphors for photoluminescent liquid crystal displays,” J. Appl. Phys. 84, 3827–3829(1998).
[Crossref]

1995 (2)

R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
[Crossref]

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7, 1547–1551 (1995).
[Crossref]

1974 (1)

J. L. Sommerdijk, J. M. P. J. Verstegen, and A. Bril, “Luminescence of MeFX:Eu2+ (Me=Sr, Ba; X=Cl, Br),” J. Lumin. 8, 502–506 (1974).
[Crossref]

1969 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

1968 (2)

G. Blasse, W. L. Wanmaker, J. W. Ter Vruggt, and A. Bril, “Flourescence of Eu2+-activated silicates,” Philips Res. Rep. 23, 189–200 (1968).

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

1967 (1)

L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

Alvarez, E. R.

R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
[Crossref]

Barbier, J.

J. Barbier, “The non-centrosymmetric borate chlorides Ba2TB4O9Cl (T=Al, Ga),” Solid State Sci. 9, 344–350 (2007).
[Crossref]

Bayley, P. A.

A. Vecht, A. C. Newport, P. A. Bayley, and W. A. Crossland, “Narrow band 390nm emitting phosphors for photoluminescent liquid crystal displays,” J. Appl. Phys. 84, 3827–3829(1998).
[Crossref]

Blasse, G.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7, 1547–1551 (1995).
[Crossref]

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

G. Blasse, W. L. Wanmaker, J. W. Ter Vruggt, and A. Bril, “Flourescence of Eu2+-activated silicates,” Philips Res. Rep. 23, 189–200 (1968).

Blokpoel, W. P.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7, 1547–1551 (1995).
[Crossref]

Bolta, C.

C. Bolta, “Balanced blue spectrum therapy lighting,” U.S. patent 7,015,636 (21 March 2006).

Bril, A.

J. L. Sommerdijk, J. M. P. J. Verstegen, and A. Bril, “Luminescence of MeFX:Eu2+ (Me=Sr, Ba; X=Cl, Br),” J. Lumin. 8, 502–506 (1974).
[Crossref]

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

G. Blasse, W. L. Wanmaker, J. W. Ter Vruggt, and A. Bril, “Flourescence of Eu2+-activated silicates,” Philips Res. Rep. 23, 189–200 (1968).

Chen, T. M.

Comacho, M. A.

R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
[Crossref]

Crossland, W. A.

A. Vecht, A. C. Newport, P. A. Bayley, and W. A. Crossland, “Narrow band 390nm emitting phosphors for photoluminescent liquid crystal displays,” J. Appl. Phys. 84, 3827–3829(1998).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

Dhopte, S. M.

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

Im, W. B.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

Jeon, D. Y.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

Jung, H. K.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

Jung, K. Y.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

Kang, J. H.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

Kim, Y. I.

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

Kondawar, V. K.

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

Kuo, T. W.

Liu, W. R.

MacKie, R. M.

R. M. MacKie, “Effects of ultraviolet radiation on human health,” Radiat. Prot. Dosim. 91, 15–18 (2000).

Moharil, S. V.

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

Munoz, A. F.

R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
[Crossref]

Muthal, P. L.

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

Newport, A. C.

A. Vecht, A. C. Newport, P. A. Bayley, and W. A. Crossland, “Narrow band 390nm emitting phosphors for photoluminescent liquid crystal displays,” J. Appl. Phys. 84, 3827–3829(1998).
[Crossref]

Omanwar, S. K.

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

Poort, S. H. M.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7, 1547–1551 (1995).
[Crossref]

Ropp, R. C.

R. C. Ropp, Luminescence and the Solid State (Elsevier, 1991).

Rubio, J. O.

R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
[Crossref]

Shionoya, S.

S. Shionoya and W. M. Yen, Phosphor Handbook (CRC, 1999), pp. 391–432.

Sommerdijk, J. L.

J. L. Sommerdijk, J. M. P. J. Verstegen, and A. Bril, “Luminescence of MeFX:Eu2+ (Me=Sr, Ba; X=Cl, Br),” J. Lumin. 8, 502–506 (1974).
[Crossref]

Sosa, R. F.

R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
[Crossref]

Stirne, R.

J. H. Wilkens and R. Stirne, “Irradiation device for therapeutic treatment of skin and other ailments,” U.S. patent 6,902,563 (7 June 2005).

Ter Vruggt, J. W.

G. Blasse, W. L. Wanmaker, J. W. Ter Vruggt, and A. Bril, “Flourescence of Eu2+-activated silicates,” Philips Res. Rep. 23, 189–200 (1968).

Thakare, D. S.

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

Van Uitert, L. G.

L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
[Crossref]

Vecht, A.

A. Vecht, A. C. Newport, P. A. Bayley, and W. A. Crossland, “Narrow band 390nm emitting phosphors for photoluminescent liquid crystal displays,” J. Appl. Phys. 84, 3827–3829(1998).
[Crossref]

Verstegen, J. M. P. J.

J. L. Sommerdijk, J. M. P. J. Verstegen, and A. Bril, “Luminescence of MeFX:Eu2+ (Me=Sr, Ba; X=Cl, Br),” J. Lumin. 8, 502–506 (1974).
[Crossref]

Wanmaker, W. L.

G. Blasse, W. L. Wanmaker, J. W. Ter Vruggt, and A. Bril, “Flourescence of Eu2+-activated silicates,” Philips Res. Rep. 23, 189–200 (1968).

Wilkens, J. H.

J. H. Wilkens and R. Stirne, “Irradiation device for therapeutic treatment of skin and other ailments,” U.S. patent 6,902,563 (7 June 2005).

Yen, W. M.

S. Shionoya and W. M. Yen, Phosphor Handbook (CRC, 1999), pp. 391–432.

Chem. Mater. (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7, 1547–1551 (1995).
[Crossref]

J. Appl. Phys. (1)

A. Vecht, A. C. Newport, P. A. Bayley, and W. A. Crossland, “Narrow band 390nm emitting phosphors for photoluminescent liquid crystal displays,” J. Appl. Phys. 84, 3827–3829(1998).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

J. Electrochem. Soc. (1)

L. G. Van Uitert, “Characterization of energy transfer interactions between rare earth ions,” J. Electrochem. Soc. 114, 1048–1053 (1967).
[Crossref]

J. Lumin. (1)

J. L. Sommerdijk, J. M. P. J. Verstegen, and A. Bril, “Luminescence of MeFX:Eu2+ (Me=Sr, Ba; X=Cl, Br),” J. Lumin. 8, 502–506 (1974).
[Crossref]

J. Mater. Res. (1)

W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, “Neutron Rietveld analysis for optimized CaMgSi2O6:Eu2+ and its luminescent properties,” J. Mater. Res. 20, 2061–2066 (2005).
[Crossref]

J. Phys.: Condens. Matter (1)

R. F. Sosa, E. R. Alvarez, M. A. Comacho, A. F. Munoz, and J. O. Rubio, “Time-resolved spectroscopy of the Eu2+ luminescence in KCl:Ba2+, KCl:Sr2+, Eu2+ and KBr:Sr2+, Eu2+,” J. Phys.: Condens. Matter 7, 6561–6568 (1995).
[Crossref]

Opt. Express (2)

Philips Res. Rep. (3)

G. Blasse, W. L. Wanmaker, J. W. Ter Vruggt, and A. Bril, “Flourescence of Eu2+-activated silicates,” Philips Res. Rep. 23, 189–200 (1968).

G. Blasse and A. Bril, “Fluorescence of Eu2+-activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).

Phys. Stat. Sol. (a) (1)

D. S. Thakare, S. K. Omanwar, P. L. Muthal, S. M. Dhopte, V. K. Kondawar, and S. V. Moharil, “UV-emitting phosphors: synthesis, photoluminescence and applications,” Phys. Stat. Sol. (a) 201, 574–581 (2004).
[Crossref]

Radiat. Prot. Dosim. (1)

R. M. MacKie, “Effects of ultraviolet radiation on human health,” Radiat. Prot. Dosim. 91, 15–18 (2000).

Solid State Sci. (1)

J. Barbier, “The non-centrosymmetric borate chlorides Ba2TB4O9Cl (T=Al, Ga),” Solid State Sci. 9, 344–350 (2007).
[Crossref]

Other (4)

S. Shionoya and W. M. Yen, Phosphor Handbook (CRC, 1999), pp. 391–432.

R. C. Ropp, Luminescence and the Solid State (Elsevier, 1991).

J. H. Wilkens and R. Stirne, “Irradiation device for therapeutic treatment of skin and other ailments,” U.S. patent 6,902,563 (7 June 2005).

C. Bolta, “Balanced blue spectrum therapy lighting,” U.S. patent 7,015,636 (21 March 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of Ba 2 Al B 4 O 9 Cl (Ref. [9]) and ( Ba 0.94 Eu 0.06 ) 2 Al B 4 O 9 Cl sample. Inset: the tetragonal structure of Ba 2 Al B 4 O 9 Cl viewed along the c direction (the small numbers are labels for the O atoms).

Fig. 2
Fig. 2

Comparison of UV-vis diffuse reflectance spectra for undoped Ba 2 Al B 4 O 9 Cl and ( Ba 0.94 Eu 0.06 ) 2 Al B 4 O 9 Cl .

Fig. 3
Fig. 3

(a) PL and PLE spectra of ( Ba 0.94 Eu 0.06 ) 2 Al B 4 O 9 Cl ( λ ex. = 365 nm , λ em. = 420 nm ). The dotted curves are Gaussian decomposition curves. Inset: Decay curve of ( Ba 0.94 Eu 0.06 ) 2 Al B 4 O 9 Cl phosphor excited at 365 nm and monitored at 420 nm . (b) PL spectra of ( Ba 0.94 Eu 0.06 ) 2 Al B 4 O 9 Cl and Sr 2 P 2 O 7 : Eu 2 + ( λ ex. = 365 nm ).

Fig. 4
Fig. 4

Emission intensity as a function of Eu 2 + concentration (x) for ( Ba 1 x Eu x ) 2 Al B 4 O 9 Cl ( x = 0.02 , 0.06, 0.10, 0.15, 0.25) phosphors ( λ ex. = 365 nm ). Inset: log ( I / x Eu 2 + ) dependence of log ( x Eu 2 + ) .

Fig. 5
Fig. 5

(a) EL spectra of a violet-blue-emitting FL fabricated using a ( Ba 0.94 Eu 0.06 ) 2 Al B 4 O 9 Cl phosphor driven by a power of 3 W . (b) EL spectra of a violet-blue emitting GaN-based NUV-LED ( 370 nm ) comprised of ( Ba 0.94 Eu 0.06 ) 2 Al B 4 O 9 Cl phosphor driven by a power of 0.07 W . Inset: FL and pc-LED photos.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = A 1 exp ( t τ 1 ) + A 2 exp ( t τ 2 ) ,
R c 2 ( 3 V 4 π x c N ) 1 / 3 .
I x = k 1 + β ( x ) θ / 3 ,

Metrics