Abstract

We describe a setup including a microscope to study volumes of a few μm3 by static and dynamic light scattering (DLS) in a backscattering configuration. Light scattered by individual objects of micrometric size can be analyzed in the 400800nm spectral range. This setup can also be employed to study both diluted and concentrated colloidal solutions by DLS measurements. For diluted solutions we found evidence of the fluctuations of the number of particles in a confocal volume. We discuss their contribution to the autocorrelation function of the scattered intensity measured as a function of time.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Zsigmond, “Properties of colloids,” in Nobel Lectures in Chemistry 1922–1941 (Elsevier, 1966).
  2. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
    [CrossRef] [PubMed]
  3. N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scattering imaging: subcellular morphometry in situ with Fourier filtering,” Opt. Lett. 26, 1063–1065 (2001).
    [CrossRef]
  4. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
    [CrossRef] [PubMed]
  5. A. Curry, G. Nusz, A. Chicolti, and A. Wax, “Substrate effect on refractive index dependence of plasmons resonances for individual silver nanoparticles observed using dark field microspectroscopy,” Opt. Express 13, 2668–2677 (2005).
    [CrossRef] [PubMed]
  6. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
    [CrossRef]
  7. Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopy microscopy,” Opt. Lett. 30, 2445–2447 (2005).
    [CrossRef] [PubMed]
  8. M. T. Valentine, A. K. Popp, D. A. Weitz, and P. D. Kaplan, “Microscope-based static light-scattering instrument,” Opt. Lett. 26, 890–892 (2001).
    [CrossRef]
  9. B. J. Berne and R. Pecora, Dynamic Light Scattering with Application to Chemistry, Biology and Physics (Wiley, 1976).
  10. N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
    [CrossRef]
  11. S. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by dynamic light scattering,” Eur. Phys. J. E 26, 435–448 (2008).
    [CrossRef]
  12. T. Maeda and S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567(1972).
    [CrossRef]
  13. T. Cochrane and J. C. Earnshaw, “Practical laser Doppler microscopes,” J. Phys. E 11, 196–198 (1978).
    [CrossRef]
  14. P. S. Blank, R. B. Tishler, and F. D. Carlson, “Quasielastic light scattering microscope spectrometer,” Appl. Opt. 26, 351–356(1987).
    [CrossRef] [PubMed]
  15. J.-C. Wang, “A novel optical microscope laser light scattering system,” Opt. Commun. 155, 236–240 (1998).
    [CrossRef]
  16. J.-C. Wang, “Design and testing of a novel microscopic photon correlation spectrometer with higher accuracy,” J. Opt. A: Pure Appl. Opt. 3, 360–365 (2001).
    [CrossRef]
  17. P. D. Kaplan, V. Trappe, and D. A. Weitz, “Light-scattering microscope,” Appl. Opt. 38, 4151–4157 (1999).
    [CrossRef]
  18. C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
    [CrossRef] [PubMed]
  19. D. S. Horne, “Particle size measurements in concentrated latex suspensions using fibre-optic photon correlation spectroscopy,” J. Phys. D 22, 1257–1265 (1989).
    [CrossRef]
  20. T. W. Patapoff, T. H. Tani, and M. E. M. Cromwell, “A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions,” Anal. Biochem. 270, 338–340 (1999).
    [CrossRef] [PubMed]
  21. D. W. Schaefer and B. J. Berne, “Light scattering from non-Gaussian concentration fluctuations,” Phys. Rev. Lett. 28, 475–478 (1972).
    [CrossRef]
  22. D. W. Schaefer and P. N. Pusey, “Statistics of non-Gaussian scattered light,” Phys. Rev. Lett. 29, 843–845(1972).
    [CrossRef]
  23. www.cnilaser.com.
  24. www.ciprian.com.
  25. www.licel.com.
  26. M. Medebach, N. Freiberger, and O. Glatter, “Dynamic light scattering in turbid nonergodic media,” Rev. Sci. Instrum. 79, 073907 (2008).
    [CrossRef]
  27. R. S. Stock and W. H. Ray, “Interpretation of photon correlation spectroscopy data: a comparison of analysis methods,” J. Polym. Sci. Polym. Phys. Ed. 23, 1393–1447(1985).
    [CrossRef]
  28. www.philiplaven.com/mieplot.htm.
  29. H.Z.Cummins and E.R.Pike, eds., Photon Correlation and Light Beating Spectroscopy (Plenum, 1974).
  30. D. A. Ross, “Focused laser beam effects in optical particle sizing by dynamic light scattering,” Appl. Opt. 30, 4882–4888(1991).
    [CrossRef] [PubMed]
  31. A. T. Forrester, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
    [CrossRef]
  32. S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge U. Press, 1995).
  33. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusive wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
    [CrossRef] [PubMed]
  34. P. N. Pusey, “Number fluctuations of interacting particles,” J. Phys. A 12, 1805–1818 (1979).
    [CrossRef]
  35. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
    [CrossRef]
  36. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–298 (2002).
    [CrossRef]
  37. D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708(1972).
    [CrossRef]
  38. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227–229(1987).
    [CrossRef] [PubMed]
  39. K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
    [CrossRef]
  40. R. Rigler, J. Widengren, and Ü. Mets, in Fluorescence Spectroscopy, O.Wolfbeis, ed. (Springer, 1993).

2008

S. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by dynamic light scattering,” Eur. Phys. J. E 26, 435–448 (2008).
[CrossRef]

M. Medebach, N. Freiberger, and O. Glatter, “Dynamic light scattering in turbid nonergodic media,” Rev. Sci. Instrum. 79, 073907 (2008).
[CrossRef]

2006

C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
[CrossRef] [PubMed]

2005

2004

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

2003

2002

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–298 (2002).
[CrossRef]

2001

1999

P. D. Kaplan, V. Trappe, and D. A. Weitz, “Light-scattering microscope,” Appl. Opt. 38, 4151–4157 (1999).
[CrossRef]

T. W. Patapoff, T. H. Tani, and M. E. M. Cromwell, “A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions,” Anal. Biochem. 270, 338–340 (1999).
[CrossRef] [PubMed]

1998

J.-C. Wang, “A novel optical microscope laser light scattering system,” Opt. Commun. 155, 236–240 (1998).
[CrossRef]

1996

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

1991

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

D. A. Ross, “Focused laser beam effects in optical particle sizing by dynamic light scattering,” Appl. Opt. 30, 4882–4888(1991).
[CrossRef] [PubMed]

1990

K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
[CrossRef]

1989

D. S. Horne, “Particle size measurements in concentrated latex suspensions using fibre-optic photon correlation spectroscopy,” J. Phys. D 22, 1257–1265 (1989).
[CrossRef]

1988

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusive wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

1987

1985

R. S. Stock and W. H. Ray, “Interpretation of photon correlation spectroscopy data: a comparison of analysis methods,” J. Polym. Sci. Polym. Phys. Ed. 23, 1393–1447(1985).
[CrossRef]

1979

P. N. Pusey, “Number fluctuations of interacting particles,” J. Phys. A 12, 1805–1818 (1979).
[CrossRef]

1978

T. Cochrane and J. C. Earnshaw, “Practical laser Doppler microscopes,” J. Phys. E 11, 196–198 (1978).
[CrossRef]

1972

T. Maeda and S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567(1972).
[CrossRef]

D. W. Schaefer and B. J. Berne, “Light scattering from non-Gaussian concentration fluctuations,” Phys. Rev. Lett. 28, 475–478 (1972).
[CrossRef]

D. W. Schaefer and P. N. Pusey, “Statistics of non-Gaussian scattered light,” Phys. Rev. Lett. 29, 843–845(1972).
[CrossRef]

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708(1972).
[CrossRef]

1956

A. T. Forrester, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
[CrossRef]

1943

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Backman, V.

Bar-Am, I.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Berne, B. J.

D. W. Schaefer and B. J. Berne, “Light scattering from non-Gaussian concentration fluctuations,” Phys. Rev. Lett. 28, 475–478 (1972).
[CrossRef]

B. J. Berne and R. Pecora, Dynamic Light Scattering with Application to Chemistry, Biology and Physics (Wiley, 1976).

Blank, P. S.

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–298 (2002).
[CrossRef]

Boustany, N. N.

Carlini, A. R.

Carlson, F. D.

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusive wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Chandrasekhar, S.

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Chicolti, A.

Chiu, D. T.

C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
[CrossRef] [PubMed]

Cochrane, T.

T. Cochrane and J. C. Earnshaw, “Practical laser Doppler microscopes,” J. Phys. E 11, 196–198 (1978).
[CrossRef]

Cromwell, M. E. M.

T. W. Patapoff, T. H. Tani, and M. E. M. Cromwell, “A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions,” Anal. Biochem. 270, 338–340 (1999).
[CrossRef] [PubMed]

Curry, A.

De Jaeger, N.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

Demeyere, H.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

du Manoir, S.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Earnshaw, J. C.

T. Cochrane and J. C. Earnshaw, “Practical laser Doppler microscopes,” J. Phys. E 11, 196–198 (1978).
[CrossRef]

Elson, E.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708(1972).
[CrossRef]

Enger, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Ferguson-Smith, M. A.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Finsy, R.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

Forrester, A. T.

A. T. Forrester, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
[CrossRef]

Freiberger, N.

M. Medebach, N. Freiberger, and O. Glatter, “Dynamic light scattering in turbid nonergodic media,” Rev. Sci. Instrum. 79, 073907 (2008).
[CrossRef]

Freyssingeas, E.

S. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by dynamic light scattering,” Eur. Phys. J. E 26, 435–448 (2008).
[CrossRef]

Fujime, S.

T. Maeda and S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567(1972).
[CrossRef]

Fujimoto, B. S.

C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
[CrossRef] [PubMed]

Garini, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Glatter, O.

M. Medebach, N. Freiberger, and O. Glatter, “Dynamic light scattering in turbid nonergodic media,” Rev. Sci. Instrum. 79, 073907 (2008).
[CrossRef]

Goillot, E.

S. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by dynamic light scattering,” Eur. Phys. J. E 26, 435–448 (2008).
[CrossRef]

Goksör, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusive wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Horne, D. S.

D. S. Horne, “Particle size measurements in concentrated latex suspensions using fibre-optic photon correlation spectroscopy,” J. Phys. D 22, 1257–1265 (1989).
[CrossRef]

Izatt, J. A.

Käll, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Kaplan, P. D.

Kim, Y. L.

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–298 (2002).
[CrossRef]

Kuo, S. C.

Kuyper, C. L.

C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
[CrossRef] [PubMed]

Ledbetter, D. H.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Li, X.

Lipson, H.

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge U. Press, 1995).

Lipson, S. G.

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge U. Press, 1995).

Liu, Y.

Maeda, T.

T. Maeda and S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567(1972).
[CrossRef]

Magde, D.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708(1972).
[CrossRef]

Medebach, M.

M. Medebach, N. Freiberger, and O. Glatter, “Dynamic light scattering in turbid nonergodic media,” Rev. Sci. Instrum. 79, 073907 (2008).
[CrossRef]

Mets, Ü.

R. Rigler, J. Widengren, and Ü. Mets, in Fluorescence Spectroscopy, O.Wolfbeis, ed. (Springer, 1993).

Nihg, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Nusz, G.

Patapoff, T. W.

T. W. Patapoff, T. H. Tani, and M. E. M. Cromwell, “A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions,” Anal. Biochem. 270, 338–340 (1999).
[CrossRef] [PubMed]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Application to Chemistry, Biology and Physics (Wiley, 1976).

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusive wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Place, C.

S. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by dynamic light scattering,” Eur. Phys. J. E 26, 435–448 (2008).
[CrossRef]

Popp, A. K.

Prikulis, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Pusey, P. N.

P. N. Pusey, “Number fluctuations of interacting particles,” J. Phys. A 12, 1805–1818 (1979).
[CrossRef]

D. W. Schaefer and P. N. Pusey, “Statistics of non-Gaussian scattered light,” Phys. Rev. Lett. 29, 843–845(1972).
[CrossRef]

Ramser, K.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Ray, W. H.

R. S. Stock and W. H. Ray, “Interpretation of photon correlation spectroscopy data: a comparison of analysis methods,” J. Polym. Sci. Polym. Phys. Ed. 23, 1393–1447(1985).
[CrossRef]

Ried, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Rigler, R.

R. Rigler, J. Widengren, and Ü. Mets, in Fluorescence Spectroscopy, O.Wolfbeis, ed. (Springer, 1993).

Ross, D. A.

Schaefer, D. W.

D. W. Schaefer and P. N. Pusey, “Statistics of non-Gaussian scattered light,” Phys. Rev. Lett. 29, 843–845(1972).
[CrossRef]

D. W. Schaefer and B. J. Berne, “Light scattering from non-Gaussian concentration fluctuations,” Phys. Rev. Lett. 28, 475–478 (1972).
[CrossRef]

Schätzel, K.

K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
[CrossRef]

Schirp, P. G.

C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
[CrossRef] [PubMed]

Schoell, B.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Schröck, E.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Sneyers, R.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

Soenksen, D.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Stock, R. S.

R. S. Stock and W. H. Ray, “Interpretation of photon correlation spectroscopy data: a comparison of analysis methods,” J. Polym. Sci. Polym. Phys. Ed. 23, 1393–1447(1985).
[CrossRef]

Suissa, S.

S. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by dynamic light scattering,” Eur. Phys. J. E 26, 435–448 (2008).
[CrossRef]

Svedberg, F.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Tani, T. H.

T. W. Patapoff, T. H. Tani, and M. E. M. Cromwell, “A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions,” Anal. Biochem. 270, 338–340 (1999).
[CrossRef] [PubMed]

Tannhauser, D. S.

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge U. Press, 1995).

Thakor, N. V.

Tishler, R. B.

Trappe, V.

Valentine, M. T.

Van der Meeren, P.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

van Laethem, M.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

Vanderdeelen, J.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

Veldman, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Wang, J.-C.

J.-C. Wang, “Design and testing of a novel microscopic photon correlation spectrometer with higher accuracy,” J. Opt. A: Pure Appl. Opt. 3, 360–365 (2001).
[CrossRef]

J.-C. Wang, “A novel optical microscope laser light scattering system,” Opt. Commun. 155, 236–240 (1998).
[CrossRef]

Wax, A.

Webb, W. W.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708(1972).
[CrossRef]

Weitz, D. A.

Widengren, J.

R. Rigler, J. Widengren, and Ü. Mets, in Fluorescence Spectroscopy, O.Wolfbeis, ed. (Springer, 1993).

Wienberg, J.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Wilson, T.

Yang, C.

Zhao, Y.

C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
[CrossRef] [PubMed]

Zsigmond, R. A.

R. A. Zsigmond, “Properties of colloids,” in Nobel Lectures in Chemistry 1922–1941 (Elsevier, 1966).

Am. J. Phys.

A. T. Forrester, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956).
[CrossRef]

Anal. Biochem.

T. W. Patapoff, T. H. Tani, and M. E. M. Cromwell, “A low-volume, short-path length dynamic light scattering sample cell for highly turbid suspensions,” Anal. Biochem. 270, 338–340 (1999).
[CrossRef] [PubMed]

Appl. Opt.

Eur. Phys. J. E

S. Suissa, C. Place, E. Goillot, and E. Freyssingeas, “Internal dynamics of a living cell nucleus investigated by dynamic light scattering,” Eur. Phys. J. E 26, 435–448 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

J.-C. Wang, “Design and testing of a novel microscopic photon correlation spectrometer with higher accuracy,” J. Opt. A: Pure Appl. Opt. 3, 360–365 (2001).
[CrossRef]

J. Phys. A

P. N. Pusey, “Number fluctuations of interacting particles,” J. Phys. A 12, 1805–1818 (1979).
[CrossRef]

J. Phys. Chem. B

C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schirp, and D. T. Chiu, “Accurate sizing of nanoparticles using confocal correlation spectroscopy,” J. Phys. Chem. B 110, 24433–24441(2006).
[CrossRef] [PubMed]

J. Phys. D

D. S. Horne, “Particle size measurements in concentrated latex suspensions using fibre-optic photon correlation spectroscopy,” J. Phys. D 22, 1257–1265 (1989).
[CrossRef]

J. Phys. E

T. Cochrane and J. C. Earnshaw, “Practical laser Doppler microscopes,” J. Phys. E 11, 196–198 (1978).
[CrossRef]

J. Polym. Sci. Polym. Phys. Ed.

R. S. Stock and W. H. Ray, “Interpretation of photon correlation spectroscopy data: a comparison of analysis methods,” J. Polym. Sci. Polym. Phys. Ed. 23, 1393–1447(1985).
[CrossRef]

Nano Lett.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115–118 (2004).
[CrossRef]

Opt. Commun.

J.-C. Wang, “A novel optical microscope laser light scattering system,” Opt. Commun. 155, 236–240 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Part. Part. Syst. Charact.

N. De Jaeger, H. Demeyere, R. Finsy, R. Sneyers, J. Vanderdeelen, P. Van der Meeren, and M. van Laethem, “Particle sizing by correlation spectroscopy,” Part. Part. Syst. Charact. 8, 179–186 (1991).
[CrossRef]

Phys. Rev. Lett.

D. W. Schaefer and B. J. Berne, “Light scattering from non-Gaussian concentration fluctuations,” Phys. Rev. Lett. 28, 475–478 (1972).
[CrossRef]

D. W. Schaefer and P. N. Pusey, “Statistics of non-Gaussian scattered light,” Phys. Rev. Lett. 29, 843–845(1972).
[CrossRef]

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708(1972).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusive wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137(1988).
[CrossRef] [PubMed]

Quantum Opt.

K. Schätzel, “Noise on photon correlation data: I. autocorrelation functions,” Quantum Opt. 2, 287–305 (1990).
[CrossRef]

Rep. Prog. Phys.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–298 (2002).
[CrossRef]

Rev. Mod. Phys.

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Rev. Sci. Instrum.

T. Maeda and S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567(1972).
[CrossRef]

Science

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Nihg, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497(1996).
[CrossRef] [PubMed]

Other

R. A. Zsigmond, “Properties of colloids,” in Nobel Lectures in Chemistry 1922–1941 (Elsevier, 1966).

B. J. Berne and R. Pecora, Dynamic Light Scattering with Application to Chemistry, Biology and Physics (Wiley, 1976).

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge U. Press, 1995).

www.cnilaser.com.

www.ciprian.com.

www.licel.com.

M. Medebach, N. Freiberger, and O. Glatter, “Dynamic light scattering in turbid nonergodic media,” Rev. Sci. Instrum. 79, 073907 (2008).
[CrossRef]

www.philiplaven.com/mieplot.htm.

H.Z.Cummins and E.R.Pike, eds., Photon Correlation and Light Beating Spectroscopy (Plenum, 1974).

R. Rigler, J. Widengren, and Ü. Mets, in Fluorescence Spectroscopy, O.Wolfbeis, ed. (Springer, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the optical setup. The microscope is represented by the objective F 1 . Two light sources are available (insets A and B), while detection of backscattered light is common for both types of illumination. Switching from one source to the other is done by replacing the lens L 3 by the mirror M 3 : L, lenses; M, mirrors; BS, beam splitters; P, pinhole; D, iris of variable aperture; F 2 , achromatic lens.

Fig. 2
Fig. 2

Calculated (gray) and experimental (black) spectrum of the light of the Xe lamp backscattered by a polystyrene sphere of diameter d = 2.13 μm . The measured intensity is normalized by the reflection of the same source focused on the bare glass substrate. Calculations are made using a standard Mie theory. Inset shows a CCD camera picture of the focus spot on a single sphere.

Fig. 3
Fig. 3

a, Normalized experimental autocorrelation functions g ( t ) of the intensity scattered perpendicularly to the incoming light by solutions of different weight concentration of latex spheres: C 5 = 6 × 10 6 (black curve), C 4 = 6 × 10 5 (dashed black), C 3 = 6 × 10 4 (dark gray), C 2 = 1.5 × 10 3 (dashed dark gray), and C 1 = 10 2 (gray). b, Linear curve fitting (full curve) of ln ( | g ( t ) 1 | ) in linear scale. For the solution C2 (gray), we observe a nonlinear plot indicating that the multiple scattering regime is reached, whereas for C5 (black) the curve is a straight line of the equation ln ( | g ( t ) 1 | ) = 3030 t 0.104 . This corresponds to the single-exponential decay of the autocorrelation, as expected for DLS, with a characteristic time τ = 0.66 ms and an intercept β = 0.9 . c, These parameters introduced in Eq. (1) permit us to calculate the autocorrelation function of C5 (curve), which is in good agreement with the experiments (dots).

Fig. 4
Fig. 4

Experimental (dots) and calculated (curve) normalized autocorrelation function g ( t ) of the backscattered intensity measured with a × 60 objective for solutions a, C1; b, C2; and c, C4. Calculations were made using Eq. (3) and adjusting the different parameters so as to find an agreement between the calculated and the experimental curves. We obtained τ 1 = 0.33 ms and β = 0.9 for C1 in a, τ 1 = 0.33 ms , β = 0.9 , τ 2 = 12 ms and N = 95 for C2 in b, and τ 1 = 0.35 ms , β = 0.9 , τ 2 = 12 ms and N = 17 for C4 in c.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g ( t ) = I ( t ) I ( 0 ) I ( 0 ) 2 = 1 + β e 2 D q 2 t ,
Δ q = q ( θ + Δ θ ) q ( θ ) = 2 k [ cos ( θ / 2 ) ( Δ θ 2 ) 1 2 sin ( θ / 2 ) ( Δ θ 2 ) 2 ] ,
g ( t ) = 1 + β e 2 q 2 D t + δ N ( 0 ) δ N ( t ) N 2 .
g ( t ) = 1 + β e 2 q 2 D t + 1 N 1 ( 1 + t / τ 2 ) 1 + t / ( w 2 τ 2 ) ,
g ( t ) = 1 + β e 2 q 2 D t + c 2 N 1 ( 1 + t / τ 2 ) 1 + t / ( w 2 τ 2 ) ,

Metrics