Abstract

This study proposes a novel process for fabricating a sandwiched long-period fiber grating (SLPFG) using a SU-8 thick photoresist technique. The SLPFG consists of a thin cladding optical fiber sandwiched with a double-sided periodical grating coating. By varying the external loads on the SLPFG, the transmission dip of the resonance wavelength is tuned according to a squared-harmonic curve. The SLPFG can thus be utilized as a loss tunable filter or sensor. The resonance dip wavelength is related to the cladding thicknesses of the optical fiber and the periods of the grating. A maximum transmission resonant dip of 34.61dB was achieved.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Shin, C. C. Chiang, and S. K. Liaw, “Comparison of single and double cladding long period fiber grating sensor using an intensity modulation interrogation system,” Opt. Commun. 258, 23–29 (2006).
    [CrossRef]
  2. K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561–3567 (2008).
    [CrossRef] [PubMed]
  3. C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng. 43, 342–345 (2004).
    [CrossRef]
  4. M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
    [CrossRef]
  5. S. K. Abi Kaed Bey, T. Sun, and K. T. V. Grattan, “Sensitivity enhancement of long period gratings for temperature measurement using the long period grating pair technique,” Sens. Actuators A, Phys. 141, 314–320 (2008).
    [CrossRef]
  6. M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
    [CrossRef]
  7. M. Jiang, A. P. Zhang, Y. C. Wang, H. Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express 17, 17976–17982 (2009).
    [CrossRef] [PubMed]
  8. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
    [CrossRef]
  9. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
    [CrossRef]
  10. C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
    [CrossRef]
  11. C. C. Chiang, T. C. Cheng, H. J. Chang, and L. R. Tsai, “Sandwiched long-period fiber grating filter based on periodic SU8-thick photoresist technique,” Opt. Lett. 34, 3677–3679(2009).
    [CrossRef] [PubMed]
  12. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17, 2397–2399 (2005).
    [CrossRef]
  13. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
    [CrossRef]
  14. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef] [PubMed]
  15. R. C. Hibbeler, Mechanics of Materials (Pearson/Prentice-Hall, 2005), Chap. 3.

2009 (3)

2008 (2)

K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561–3567 (2008).
[CrossRef] [PubMed]

S. K. Abi Kaed Bey, T. Sun, and K. T. V. Grattan, “Sensitivity enhancement of long period gratings for temperature measurement using the long period grating pair technique,” Sens. Actuators A, Phys. 141, 314–320 (2008).
[CrossRef]

2006 (1)

C. S. Shin, C. C. Chiang, and S. K. Liaw, “Comparison of single and double cladding long period fiber grating sensor using an intensity modulation interrogation system,” Opt. Commun. 258, 23–29 (2006).
[CrossRef]

2005 (1)

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

2004 (1)

C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng. 43, 342–345 (2004).
[CrossRef]

2001 (1)

1999 (1)

C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
[CrossRef]

1998 (1)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

1992 (1)

M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

1979 (1)

Abi Kaed Bey, S. K.

S. K. Abi Kaed Bey, T. Sun, and K. T. V. Grattan, “Sensitivity enhancement of long period gratings for temperature measurement using the long period grating pair technique,” Sens. Actuators A, Phys. 141, 314–320 (2008).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Chang, H. J.

Chen, C. L.

M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

Cheng, T. C.

Chern, G. W.

Chiang, C. C.

C. C. Chiang, T. C. Cheng, H. J. Chang, and L. R. Tsai, “Sandwiched long-period fiber grating filter based on periodic SU8-thick photoresist technique,” Opt. Lett. 34, 3677–3679(2009).
[CrossRef] [PubMed]

C. S. Shin, C. C. Chiang, and S. K. Liaw, “Comparison of single and double cladding long period fiber grating sensor using an intensity modulation interrogation system,” Opt. Commun. 258, 23–29 (2006).
[CrossRef]

Chou, C. E.

C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng. 43, 342–345 (2004).
[CrossRef]

Chuang, K. C.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Ding, J. F.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Fu, M. Y.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
[CrossRef]

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Grattan, K. T. V.

S. K. Abi Kaed Bey, T. Sun, and K. T. V. Grattan, “Sensitivity enhancement of long period gratings for temperature measurement using the long period grating pair technique,” Sens. Actuators A, Phys. 141, 314–320 (2008).
[CrossRef]

He, S.

M. Jiang, A. P. Zhang, Y. C. Wang, H. Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express 17, 17976–17982 (2009).
[CrossRef] [PubMed]

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Hibbeler, R. C.

R. C. Hibbeler, Mechanics of Materials (Pearson/Prentice-Hall, 2005), Chap. 3.

Hocker, G. B.

Jiang, M.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Liaw, S. K.

C. S. Shin, C. C. Chiang, and S. K. Liaw, “Comparison of single and double cladding long period fiber grating sensor using an intensity modulation interrogation system,” Opt. Commun. 258, 23–29 (2006).
[CrossRef]

Lin, C. Y.

C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
[CrossRef]

C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
[CrossRef]

Lin, G. R.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
[CrossRef]

Liu, W. F.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
[CrossRef]

C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng. 43, 342–345 (2004).
[CrossRef]

Ma, C. C.

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Shao, L. Y.

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Sheng, H. J.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
[CrossRef]

Shin, C. S.

C. S. Shin, C. C. Chiang, and S. K. Liaw, “Comparison of single and double cladding long period fiber grating sensor using an intensity modulation interrogation system,” Opt. Commun. 258, 23–29 (2006).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Su, P. C.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
[CrossRef]

Sun, N. H.

C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng. 43, 342–345 (2004).
[CrossRef]

Sun, T.

S. K. Abi Kaed Bey, T. Sun, and K. T. V. Grattan, “Sensitivity enhancement of long period gratings for temperature measurement using the long period grating pair technique,” Sens. Actuators A, Phys. 141, 314–320 (2008).
[CrossRef]

Tam, H. Y.

Tien, C. L.

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
[CrossRef]

Tsai, L. R.

Vaziri, M.

M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Wang, L. A.

C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
[CrossRef]

C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
[CrossRef]

Wang, Y. C.

Zhang, A. P.

M. Jiang, A. P. Zhang, Y. C. Wang, H. Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express 17, 17976–17982 (2009).
[CrossRef] [PubMed]

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature,” IEEE Photonics Technol. Lett. 17, 2397–2399 (2005).
[CrossRef]

J. Lightwave Technol. (3)

M. Vaziri and C. L. Chen, “Etched fibers as strain gauges,” J. Lightwave Technol. 10, 836–841 (1992).
[CrossRef]

C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65(1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Y. Fu, G. R. Lin, W. F. Liu, H. J. Sheng, P. C. Su, and C. L. Tien, “Optical fiber sensor based on air-gap long-period fiber gratings,” Jpn. J. Appl. Phys. 48, 120211 (2009).
[CrossRef]

Opt. Commun. (1)

C. S. Shin, C. C. Chiang, and S. K. Liaw, “Comparison of single and double cladding long period fiber grating sensor using an intensity modulation interrogation system,” Opt. Commun. 258, 23–29 (2006).
[CrossRef]

Opt. Eng. (1)

C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng. 43, 342–345 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators A, Phys. (1)

S. K. Abi Kaed Bey, T. Sun, and K. T. V. Grattan, “Sensitivity enhancement of long period gratings for temperature measurement using the long period grating pair technique,” Sens. Actuators A, Phys. 141, 314–320 (2008).
[CrossRef]

Other (1)

R. C. Hibbeler, Mechanics of Materials (Pearson/Prentice-Hall, 2005), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the SLPFG structure.

Fig. 2
Fig. 2

Schematic of the process for the SLPFGs.

Fig. 3
Fig. 3

Macrograph of the SLPFGs.

Fig. 4
Fig. 4

Experimental setup for characterization experiments for loading-induced attenuation loss.

Fig. 5
Fig. 5

Transmission spectrum of SLPFGs (periods, 620 μm ) with various fiber cladding thicknesses and under different loadings.

Fig. 6
Fig. 6

Transmission spectra of SLPFGs with various fiber cladding thicknesses and periods.

Fig. 7
Fig. 7

Relation of resonant wavelength and grating periods in fibers with different fiber cladding thicknesses.

Fig. 8
Fig. 8

Transmission loss of the SLPFG (periods 610 640 μm ; fiber cladding thicknesses 40.5, 37.5, 35, and 30.5 μm ) as a function of loading.

Tables (1)

Tables Icon

Table 1 Wavelengths of Sandwiched Long-Period Fiber Gratings (nm)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n p ( r ) = 1 2 [ n ( r ) ] 3 p e F ( b h π r e 2 ) E p + π r e 2 E e ,
Δ n e ( r ) = 1 2 [ n ( r ) ] 3 p e F π r e 2 E e ,
σ i i dc = ω e 0 2 A n eff Δ n ( r ) e i ( r ) · e i * ( r ) d A ,
κ i j ac = ω e 0 m 4 A n eff Δ n ( r ) e i ( r ) · e j * ( r ) d A ,
λ = Λ ( n co eff n cl eff ) 1 ( σ 11 dc σ 22 dc ) Λ 2 π ,
T = cos 2 ( k 12 ac L ) .

Metrics