Abstract

A multichannel, multilayer feed forward neural network model is proposed for rotation invariant recognition of objects. In the M channel network, each channel consists of a one dimensional slice of the two dimensional (2D) Fourier transform (FT) of the input pattern that connects fully to the weight matrix. Each slice is taken at different angles from the 2D FT of the object. From each channel, only one neuron can fire in the presence of the training object. The output layer sums up the response of the hidden layer neuron and confirms the presence of the object. Rotation invariant recognition from 0° to 360° is obtained even in the case of degraded images.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription