Abstract

A high coupling efficiency and long propagating length technique is suggested for surface plasmon polaritons (SPPs). An attenuated total reflection (ATR) mode is employed to enhance the coupling efficiency by SPPs resonating with the incident light in the SPP launching zone. In the SPP transmitting zone, a step-metal film is embedded in a dielectric to decrease the radiation and absorption losses. Simulated results reveal that an SPP transmitting length of several hundred micrometers can be achieved with high energy. Besides, analyzed results indicate that the fabrication of the device is easy because of its simple structure and large tolerances.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. N. A. Janunts and Kh. V. Nerkararyana, “Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79, 299–301 (2001).
    [CrossRef]
  3. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
    [CrossRef]
  4. B. Alexandra, S. V. Valentyn, B. N. Rasmus, M. Esteban, G. R. Sergio, and I. B. Sergey, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
    [CrossRef]
  5. N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003).
    [CrossRef]
  6. I. B. Sergey, N. Thomas, and L. Kristjan, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005).
    [CrossRef]
  7. J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
    [CrossRef]
  8. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  9. S. Thomas, I. B. Sergey, and B. Alexandra, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
    [CrossRef]
  10. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  11. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  12. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  13. S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329(2004).
    [CrossRef]
  14. T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86, 141105 (2005).
    [CrossRef]
  15. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  16. S. Sergei and J. F. M. Olivier, “Resonant tunneling of surface plasmonpolaritons,” Opt. Express 15, 6380–6388 (2007).
    [CrossRef]
  17. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [CrossRef]
  18. I. M. Mihailo and D. R. Aleksandar, “Determination of the reflection coefficients of laser light of wavelengths λ∈(0.22μm,200μm) from the surface of aluminum using the Lorentz-Drude model,” Appl. Opt. 29, 3479–3483 (1990).
    [CrossRef]
  19. D. R. Aleksandar, B. D. Aleksandra, M. E. Jovan, and L. M. Marian, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283(1998).
    [CrossRef]

2008 (1)

2007 (4)

S. Sergei and J. F. M. Olivier, “Resonant tunneling of surface plasmonpolaritons,” Opt. Express 15, 6380–6388 (2007).
[CrossRef]

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

2006 (1)

S. Thomas, I. B. Sergey, and B. Alexandra, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

2005 (3)

I. B. Sergey, N. Thomas, and L. Kristjan, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005).
[CrossRef]

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86, 141105 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

2004 (1)

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329(2004).
[CrossRef]

2003 (1)

N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003).
[CrossRef]

2001 (1)

N. A. Janunts and Kh. V. Nerkararyana, “Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79, 299–301 (2001).
[CrossRef]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

1998 (1)

1990 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Al-Bader, S. J.

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329(2004).
[CrossRef]

Aleksandar, D. R.

Aleksandra, B. D.

Alexandra, B.

B. Alexandra, S. V. Valentyn, B. N. Rasmus, M. Esteban, G. R. Sergio, and I. B. Sergey, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

S. Thomas, I. B. Sergey, and B. Alexandra, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Esteban, M.

Gray, S. K.

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86, 141105 (2005).
[CrossRef]

Ildar, S.

N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003).
[CrossRef]

Janunts, N. A.

N. A. Janunts and Kh. V. Nerkararyana, “Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79, 299–301 (2001).
[CrossRef]

Jovan, M. E.

Ju, J. J.

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Kim, J. T.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

Kim, M. S.

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Kjaer, K.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Kristjan, L.

I. B. Sergey, N. Thomas, and L. Kristjan, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005).
[CrossRef]

N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003).
[CrossRef]

Larsen, M. S.

Lee, M. H.

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Lee, T. W.

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86, 141105 (2005).
[CrossRef]

Leosson, K.

Marian, L. M.

Mihailo, I. M.

Nerkararyana, Kh. V.

N. A. Janunts and Kh. V. Nerkararyana, “Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79, 299–301 (2001).
[CrossRef]

Nikolajsen, T.

Olivier, J. F. M.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Park, S.

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Park, S. K.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rasmus, B. N.

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Sergei, S.

Sergey, I. B.

B. Alexandra, S. V. Valentyn, B. N. Rasmus, M. Esteban, G. R. Sergio, and I. B. Sergey, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

S. Thomas, I. B. Sergey, and B. Alexandra, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

I. B. Sergey, N. Thomas, and L. Kristjan, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005).
[CrossRef]

N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003).
[CrossRef]

Sergio, G. R.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Thomas, N.

I. B. Sergey, N. Thomas, and L. Kristjan, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005).
[CrossRef]

N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003).
[CrossRef]

Thomas, S.

S. Thomas, I. B. Sergey, and B. Alexandra, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

Valentyn, S. V.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritons,” Appl. Phys. Lett. 86, 141105 (2005).
[CrossRef]

N. A. Janunts and Kh. V. Nerkararyana, “Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons,” Appl. Phys. Lett. 79, 299–301 (2001).
[CrossRef]

N. Thomas, L. Kristjan, S. Ildar, and I. B. Sergey, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670(2003).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

ETRI J. (1)

J. J. Ju, M. S. Kim, S. Park, J. T. Kim, S. K. Park, and M. H. Lee, “10Gbps Optical signal transmission via long-range surface plasmon polariton waveguide,” ETRI J. 29, 808–810(2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329(2004).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M. S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photonics Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

I. B. Sergey, N. Thomas, and L. Kristjan, “Integrated power monitor for long-range surface plasmon polaritons,” Opt. Commun. 255, 51–56 (2005).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (3)

S. Thomas, I. B. Sergey, and B. Alexandra, “Theoretical analysis of ridge gratings for long-range surface plasmon polaritons,” Phys. Rev. B 73, 045320 (2006).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic configuration of HC-LT device: the refractive indices of the coupling prism, polymer, and metal film are n 0 , n 1 , and n 2 , respectively.

Fig. 2
Fig. 2

Simulated and calculated results: (a) HC-LT wafer with d 1 = 0.07 μm and d 2 = d 3 = 0.030 μm , (b) simulated result by FDTD, (c) intensity distribution at different depths under metal film, (d) intensity distributions at z = 50 μm with different thicknesses of the metal film.

Fig. 3
Fig. 3

Simulated and calculated results: (a) HC-LT wafer with d 1 = 0.07 μm , d 2 = 0.030 μm , d 3 = 0.015 μm , and Δ t = 5 μm ; (b) simulated by FDTD; (c) intensity distribution at different depths under metal film.

Fig. 4
Fig. 4

Intensity distribution with different Δ t at z = 50 μm , with Δ t varying from 3 to 15 μm .

Fig. 5
Fig. 5

Light-field distribution varying with different d 3 : (a) d 3 = 0.005 μm , (b) d 3 = 0.015 μm , and (c) d 3 = 0.025 μm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k z = k spp ,
with k z = 2 π n 0 sin θ / λ ,

Metrics