Abstract

A fused-silica polarization-independent wideband transmission grating used in the 1st order (Littrow mounting) for chirped-pulse-amplification, high-power lasers is designed and manufactured. An approximate grating profile can be obtained by using the simplified modal method with consideration for the corresponding accumulated phase difference of two excited propagating grating modes. An exact grating profile is optimized by using the rigorous coupled-wave analysis. With the optimized profile parameters, the gratings can theoretically exhibit diffraction efficiencies of greater than 97% at a wavelength of 800nm for both of TE- and TM-polarized waves. Diffraction efficiencies of greater than 92% can be obtained in a 100nm bandwidth (from 750 to 850nm) for both TE- and TM-polarized waves. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results agree well with the theoretical values.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  2. M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
    [CrossRef] [PubMed]
  3. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bodefeld, W. G. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271(1999).
    [CrossRef]
  4. H. Wei and L. Li, “All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency,” Appl. Opt. 42, 6255–6260 (2003).
    [CrossRef] [PubMed]
  5. J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
    [CrossRef] [PubMed]
  6. W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058–6063 (2008).
    [CrossRef] [PubMed]
  7. B. Wang, C. Zhou, J. Zheng, and J. Feng, “Wideband two-port beam splitter of a binary fused silica phase grating,” Appl. Opt. 47, 4004–4008 (2008).
    [CrossRef] [PubMed]
  8. J. Feng, C. Zhou, J. Zheng, H. Cao, and P. Lu, “Design and fabrication of a polarization-independent two-port beam splitter,” Appl. Opt. 48, 5636–5641 (2009).
    [CrossRef] [PubMed]
  9. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
    [CrossRef]
  10. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13, 10448–10456 (2005).
    [CrossRef] [PubMed]
  11. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819–826 (2007).
    [CrossRef] [PubMed]
  12. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554–1556 (2008).
    [CrossRef] [PubMed]
  13. J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298–5301 (2008).
    [CrossRef]
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  15. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  16. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434(2005).
    [CrossRef] [PubMed]
  17. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lu, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638–6643 (2008).
    [CrossRef] [PubMed]
  18. C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
    [CrossRef]
  19. S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
    [CrossRef]
  20. E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
    [CrossRef]

2010

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef] [PubMed]

2009

2008

J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298–5301 (2008).
[CrossRef]

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
[CrossRef]

J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554–1556 (2008).
[CrossRef] [PubMed]

B. Wang, C. Zhou, J. Zheng, and J. Feng, “Wideband two-port beam splitter of a binary fused silica phase grating,” Appl. Opt. 47, 4004–4008 (2008).
[CrossRef] [PubMed]

W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058–6063 (2008).
[CrossRef] [PubMed]

J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lu, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638–6643 (2008).
[CrossRef] [PubMed]

2007

2005

2003

1999

1996

1995

1994

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Bischoff, J.

Bodefeld, R.

Cao, H.

Chang, Z.

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
[CrossRef]

Chini, M.

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

Clausnitzer, T.

Dai, E.

Fan, Z.

Feng, J.

Gaylord, T. K.

Gilbertson, S.

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
[CrossRef]

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

Grann, E. B.

Hehl, K.

Heyer, H.

Jia, W.

Jin, Y.

Kämpfe, T.

Kley, E.-B.

Lalanne, P.

Li, C.

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
[CrossRef]

Li, L.

Lu, P.

Mashiko, H.

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
[CrossRef]

Moharam, M. G.

Mohaupt, U.

Moon, E.

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
[CrossRef]

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

Morris, G. M.

Mourou, G.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Palme, M.

Parriaux, O.

Perry, M. D.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

Peschel, U.

Pommet, D. A.

Ru, H.

Sauerbrey, R.

Schnabel, B.

Shao, J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Theobald, W. G.

Tishchenko, A.

Tishchenko, A. V.

Tünnermann, A.

Wang, B.

Wang, H.

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

Wang, J.

Wang, S.

Wei, H.

Welsch, E.

Wenke, L.

Zhang, Y.

Zheng, J.

Zhou, C.

Appl. Opt.

K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bodefeld, W. G. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271(1999).
[CrossRef]

H. Wei and L. Li, “All-dielectric reflection gratings: a study of the physical mechanism for achieving high efficiency,” Appl. Opt. 42, 6255–6260 (2003).
[CrossRef] [PubMed]

S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434(2005).
[CrossRef] [PubMed]

B. Wang, C. Zhou, J. Zheng, and J. Feng, “Wideband two-port beam splitter of a binary fused silica phase grating,” Appl. Opt. 47, 4004–4008 (2008).
[CrossRef] [PubMed]

W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058–6063 (2008).
[CrossRef] [PubMed]

J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lu, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638–6643 (2008).
[CrossRef] [PubMed]

J. Feng, C. Zhou, J. Zheng, H. Cao, and P. Lu, “Design and fabrication of a polarization-independent two-port beam splitter,” Appl. Opt. 48, 5636–5641 (2009).
[CrossRef] [PubMed]

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819–826 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Li, H. Mashiko, H. Wang, E. Moon, S. Gilbertson, and Z. Chang, “Carrier-envelope stabilization by controlling compressor grating separation,” Appl. Phys. Lett. 92, 191114(2008).
[CrossRef]

S. Gilbertson, H. Mashiko, C. Li, E. Moon, and Z. Chang, “Effect of laser pulse duration on extreme ultraviolet spectra from double optical grating,” Appl. Phys. Lett. 93, 111105(2008).
[CrossRef]

J. Opt. Soc. Am. A

Laser & Photon. Rev.

E. Moon, H. Wang, S. Gilbertson, H. Mashiko, M. Chini, and Z. Chang, “Advances in carrier-envelope phase stabilization of grating-based chirped-pulse amplifiers,” Laser & Photon. Rev. 4, 160–177 (2010).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298–5301 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
[CrossRef]

Science

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of a polarization-independent transmission grating: n 1 and n 2 , refractive indices of air and fused-silica, respectively; Λ, grating period; b, ridge width; h, groove depth; θ 1 , diffraction angles of the 1 st diffractive order.

Fig. 2
Fig. 2

(a) Plot of the effective indices difference ( n 0 eff n 1 eff ) versus duty cycle f for TM and TE polarizations. (b) Plot of the ratio of effective indices differences for TM polarization to that for TE polarization.

Fig. 3
Fig. 3

Contour of the minimum 1 st order diffraction efficiencies between TE and TM polarizations versus groove depth and duty cycle.

Fig. 4
Fig. 4

Contour of the ratio of the effective indices difference to incident wavelength versus incident wavelength and duty cycle for (a) TE and (b) TM polarizations. (c) Contour of the ratio of the effective indices difference for TM polarization to that for TE polarization.

Fig. 5
Fig. 5

Theoretical and experimental diffraction efficiencies of the 1 st diffractive order versus incident wavelength for TM and TE polarizations.

Fig. 6
Fig. 6

Scanning electron micrograph image of the manufactured grating.

Fig. 7
Fig. 7

Theoretical and experimental (lines with markers) diffraction efficiencies of the manufactured grating at different incident angles for TM and TE polarizations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η 1 = sin 2 ( Δ φ / 2 ) ,
Δ φ = ( n 0 eff n 1 eff ) k 0 h = 2 π ( n 0 eff n 1 eff ) h λ ,
Δ φ TM Δ φ TE = n 0 eff _ TE n 1 eff _ TE n 0 eff _ TM n 1 eff _ TM = 2 l 1 2 m 1 ,
cos [ k 1 ( 1 f ) Λ ] cos ( k 2 f Λ ) k 1 2 + k 2 2 2 k 1 k 2 sin [ k 1 ( 1 f ) Λ ] sin ( k 2 f Λ ) = cos ( α Λ ) .
cos [ k 1 ( 1 f ) Λ ] cos ( k 2 f Λ ) n 2 4 k 1 2 + k 2 2 2 n 2 2 k 1 k 2 sin [ k 1 ( 1 f ) Λ ] sin ( k 2 f Λ ) = cos ( α Λ ) .

Metrics