Abstract

The three-dimensional digital image correlation (3D-DIC) method is rapidly developing and is being widely applied to engineering and manufacturing. Despite its extensive use, the error caused by different image matching algorithms is seldom discussed. An algorithm for 3D speckle image generation is proposed, and the performances of different subpixel correlation algorithms are studied. The advantage is that there is no interpolation bias of texture in the simulation before and after deformation, and the error from the interpolation of speckle can be omitted in this algorithm. An error criterion for 3D reconstruction is proposed. 3D speckle images were simulated, and the performance of four subpixel algorithms is addressed. Based on the research results of different subpixel algorithms, a first-order Newton–Raphson iteration method and gradient-based method are recommended for 3D-DIC measurement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
    [CrossRef]
  2. L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
    [CrossRef]
  3. M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
    [CrossRef]
  4. P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandwich Struct. Mater. 8, 365–379 (2006).
    [CrossRef]
  5. F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
    [CrossRef]
  6. V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
    [CrossRef]
  7. Y. B. Guo, Y. Yao, X. G. Di, and Ieee, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (IEEE, 2006), 1131–1135.
    [CrossRef]
  8. K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
    [CrossRef]
  9. T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
    [CrossRef]
  10. T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
    [CrossRef]
  11. T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” in Advances in Experimental Mechanics V (Trans Tech, 2007), pp. 265–270.
  12. B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
    [CrossRef]
  13. H. W. Schreier, “Investigation of two and three-dimensional image correlation techniques with applications in experimental mechanics,” Ph.D. thesis (University of South Carolina, 2003).
  14. H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial-differential correlation,” Exp. Mech. 29, 261–267(1989).
    [CrossRef]
  15. C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).
    [CrossRef]
  16. H. Lu and P. Cary, “Deformation measurements by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).
    [CrossRef]
  17. M. A. Sutton, S. R. McNeill, J. S. Jang, and M. Babai, “Effects of subpixel image-restoration on digital correlation error-estimates,” Opt. Eng. 27, 870–877 (1988).
  18. D. Zhang, X. Zhang, and G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
    [CrossRef]
  19. G. C. Jin, X. F. Yao, and N. K. Bao, “Applications of speckle metrology to vibration and deformation measurements of electronic devices,” in The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000 (IEEE, 2000), vol. 2, 253–255.
    [CrossRef]
  20. B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Nemoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39 (2001).
    [CrossRef]
  21. D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).
    [CrossRef] [PubMed]
  22. L. Oriat and E. Lantz, “Subpixel detection of the center of an object using a spectral phase algorithm on the image,” Pattern Recogn. 31, 761–771 (1998).
    [CrossRef]
  23. P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
    [CrossRef]
  24. J. Zhang, G. C. Jin, S. P. Ma, and L. B. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).
    [CrossRef]
  25. M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).
    [CrossRef] [PubMed]
  26. M. C. Pitter, C. W. See, and M. G. Somekh, “Fast subpixel digital image correlation using artificial neural networks,” in Proceedings of 2001 International Conference on Image Processing (ICIP 2001), Vol 2, 901–904 (IEEE, 2001).
  27. H. Jin and H. A. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).
    [CrossRef]
  28. H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).
    [CrossRef]
  29. P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
    [CrossRef]
  30. J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
    [CrossRef]
  31. B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2008).
    [CrossRef]
  32. M. Sutton, S. McNeill, J. Helm, and Y. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, P. K. Rasotgi, ed., Vol. 77 of Topics in Applied Physics (Springer-Verlag, 2000), pp. 323–372.
    [CrossRef]
  33. B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20 (2009).
    [CrossRef]
  34. W. Tong, “An evaluation of digital image correlation criteria for strain mapping applications,” Strain 41, 167–175 (2005).
    [CrossRef]
  35. B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542 (2009).
    [CrossRef] [PubMed]

2009 (3)

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20 (2009).
[CrossRef]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542 (2009).
[CrossRef] [PubMed]

2008 (2)

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2008).
[CrossRef]

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

2007 (3)

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
[CrossRef]

2006 (4)

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandwich Struct. Mater. 8, 365–379 (2006).
[CrossRef]

2005 (3)

H. Jin and H. A. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).
[CrossRef]

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).
[CrossRef]

W. Tong, “An evaluation of digital image correlation criteria for strain mapping applications,” Strain 41, 167–175 (2005).
[CrossRef]

2003 (2)

J. Zhang, G. C. Jin, S. P. Ma, and L. B. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).
[CrossRef]

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

2001 (3)

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Nemoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39 (2001).
[CrossRef]

M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).
[CrossRef] [PubMed]

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

2000 (1)

H. Lu and P. Cary, “Deformation measurements by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).
[CrossRef]

1999 (1)

D. Zhang, X. Zhang, and G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

1998 (2)

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).
[CrossRef]

L. Oriat and E. Lantz, “Subpixel detection of the center of an object using a spectral phase algorithm on the image,” Pattern Recogn. 31, 761–771 (1998).
[CrossRef]

1996 (1)

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

1993 (2)

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, “Digital speckle-displacement measurement using a complex spectrum method,” Appl. Opt. 32, 1839–1849 (1993).
[CrossRef] [PubMed]

1989 (1)

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial-differential correlation,” Exp. Mech. 29, 261–267(1989).
[CrossRef]

1988 (1)

M. A. Sutton, S. R. McNeill, J. S. Jang, and M. Babai, “Effects of subpixel image-restoration on digital correlation error-estimates,” Opt. Eng. 27, 870–877 (1988).

Asundi, A.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20 (2009).
[CrossRef]

Babai, M.

M. A. Sutton, S. R. McNeill, J. S. Jang, and M. Babai, “Effects of subpixel image-restoration on digital correlation error-estimates,” Opt. Eng. 27, 870–877 (1988).

Bao, N. K.

G. C. Jin, X. F. Yao, and N. K. Bao, “Applications of speckle metrology to vibration and deformation measurements of electronic devices,” in The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000 (IEEE, 2000), vol. 2, 253–255.
[CrossRef]

Barthelat, F.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Becker, T.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
[CrossRef]

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” in Advances in Experimental Mechanics V (Trans Tech, 2007), pp. 265–270.

Bruck, H. A.

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).
[CrossRef]

H. Jin and H. A. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial-differential correlation,” Exp. Mech. 29, 261–267(1989).
[CrossRef]

Cary, P.

H. Lu and P. Cary, “Deformation measurements by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).
[CrossRef]

Chao, Y.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

M. Sutton, S. McNeill, J. Helm, and Y. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, P. K. Rasotgi, ed., Vol. 77 of Topics in Applied Physics (Springer-Verlag, 2000), pp. 323–372.
[CrossRef]

Chen, D. J.

Cheng, G.

D. Zhang, X. Zhang, and G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

Chiang, F. P.

Chrysochoos, A.

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Nemoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39 (2001).
[CrossRef]

Compston, P.

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandwich Struct. Mater. 8, 365–379 (2006).
[CrossRef]

Cutard, T.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Dai, F. L.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Davis, C. Q.

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).
[CrossRef]

Di, X. G.

Y. B. Guo, Y. Yao, X. G. Di, and Ieee, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (IEEE, 2006), 1131–1135.
[CrossRef]

Don, H. S.

Espinosa, H. D.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Freeman, D. M.

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).
[CrossRef]

Goldbach, M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

Goodson, K. E.

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

Guo, Y. B.

Y. B. Guo, Y. Yao, X. G. Di, and Ieee, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (IEEE, 2006), 1131–1135.
[CrossRef]

Helm, J.

M. Sutton, S. McNeill, J. Helm, and Y. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, P. K. Rasotgi, ed., Vol. 77 of Topics in Applied Physics (Springer-Verlag, 2000), pp. 323–372.
[CrossRef]

Helm, J. D.

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

Ieee,

Y. B. Guo, Y. Yao, X. G. Di, and Ieee, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (IEEE, 2006), 1131–1135.
[CrossRef]

Jang, J. S.

M. A. Sutton, S. R. McNeill, J. S. Jang, and M. Babai, “Effects of subpixel image-restoration on digital correlation error-estimates,” Opt. Eng. 27, 870–877 (1988).

Jin, G. C.

J. Zhang, G. C. Jin, S. P. Ma, and L. B. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).
[CrossRef]

G. C. Jin, X. F. Yao, and N. K. Bao, “Applications of speckle metrology to vibration and deformation measurements of electronic devices,” in The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000 (IEEE, 2000), vol. 2, 253–255.
[CrossRef]

Jin, H.

H. Jin and H. A. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).
[CrossRef]

Jin, H. Q.

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).
[CrossRef]

Kalyanasundaram, S.

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandwich Struct. Mater. 8, 365–379 (2006).
[CrossRef]

Ke, X.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

Kletting, P.

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

Krupka, R.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
[CrossRef]

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” in Advances in Experimental Mechanics V (Trans Tech, 2007), pp. 265–270.

Lantz, E.

L. Oriat and E. Lantz, “Subpixel detection of the center of an object using a spectral phase algorithm on the image,” Pattern Recogn. 31, 761–771 (1998).
[CrossRef]

Lessner, S. M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

Lu, H.

H. Lu and P. Cary, “Deformation measurements by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).
[CrossRef]

Luo, P.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

Ma, S. P.

J. Zhang, G. C. Jin, S. P. Ma, and L. B. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).
[CrossRef]

McNeill, S.

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

M. Sutton, S. McNeill, J. Helm, and Y. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, P. K. Rasotgi, ed., Vol. 77 of Topics in Applied Physics (Springer-Verlag, 2000), pp. 323–372.
[CrossRef]

McNeill, S. R.

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial-differential correlation,” Exp. Mech. 29, 261–267(1989).
[CrossRef]

M. A. Sutton, S. R. McNeill, J. S. Jang, and M. Babai, “Effects of subpixel image-restoration on digital correlation error-estimates,” Opt. Eng. 27, 870–877 (1988).

Meng, L. B.

J. Zhang, G. C. Jin, S. P. Ma, and L. B. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).
[CrossRef]

Muracciole, J. M.

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Nemoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39 (2001).
[CrossRef]

Nazaret, F.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Nemoz-Gaillard, M.

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Nemoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39 (2001).
[CrossRef]

Neumann, I.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
[CrossRef]

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” in Advances in Experimental Mechanics V (Trans Tech, 2007), pp. 265–270.

Oriat, L.

L. Oriat and E. Lantz, “Subpixel detection of the center of an object using a spectral phase algorithm on the image,” Pattern Recogn. 31, 761–771 (1998).
[CrossRef]

Orteu, J. J.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Orteu, J.-J.

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
[CrossRef]

Pan, B.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20 (2009).
[CrossRef]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542 (2009).
[CrossRef] [PubMed]

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2008).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Peters, W.

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

Peters, W. H.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial-differential correlation,” Exp. Mech. 29, 261–267(1989).
[CrossRef]

Pitter, M. C.

M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).
[CrossRef] [PubMed]

M. C. Pitter, C. W. See, and M. G. Somekh, “Fast subpixel digital image correlation using artificial neural networks,” in Proceedings of 2001 International Conference on Image Processing (ICIP 2001), Vol 2, 901–904 (IEEE, 2001).

Prorok, B. C.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Qian, K. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20 (2009).
[CrossRef]

Robert, L.

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

Schreier, H. W.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

H. W. Schreier, “Investigation of two and three-dimensional image correlation techniques with applications in experimental mechanics,” Ph.D. thesis (University of South Carolina, 2003).

See, C. W.

M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).
[CrossRef] [PubMed]

M. C. Pitter, C. W. See, and M. G. Somekh, “Fast subpixel digital image correlation using artificial neural networks,” in Proceedings of 2001 International Conference on Image Processing (ICIP 2001), Vol 2, 901–904 (IEEE, 2001).

Shi, H. M.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Siebert, T.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
[CrossRef]

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” in Advances in Experimental Mechanics V (Trans Tech, 2007), pp. 265–270.

Somekh, M. G.

M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).
[CrossRef] [PubMed]

M. C. Pitter, C. W. See, and M. G. Somekh, “Fast subpixel digital image correlation using artificial neural networks,” in Proceedings of 2001 International Conference on Image Processing (ICIP 2001), Vol 2, 901–904 (IEEE, 2001).

Spiltthof, K.

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
[CrossRef]

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” in Advances in Experimental Mechanics V (Trans Tech, 2007), pp. 265–270.

Splitthof, K.

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

Styles, M.

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandwich Struct. Mater. 8, 365–379 (2006).
[CrossRef]

Sutton, M.

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

M. Sutton, S. McNeill, J. Helm, and Y. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, P. K. Rasotgi, ed., Vol. 77 of Topics in Applied Physics (Springer-Verlag, 2000), pp. 323–372.
[CrossRef]

Sutton, M. A.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial-differential correlation,” Exp. Mech. 29, 261–267(1989).
[CrossRef]

M. A. Sutton, S. R. McNeill, J. S. Jang, and M. Babai, “Effects of subpixel image-restoration on digital correlation error-estimates,” Opt. Eng. 27, 870–877 (1988).

Tan, Y. S.

Tang, L. X.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Tiwari, V.

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

Tong, W.

W. Tong, “An evaluation of digital image correlation criteria for strain mapping applications,” Strain 41, 167–175 (2005).
[CrossRef]

Wang, Z.

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2008).
[CrossRef]

Wattrisse, B.

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Nemoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39 (2001).
[CrossRef]

Wu, Z.

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

Xie, H.

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2008).
[CrossRef]

Xie, H. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20 (2009).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Xu, B.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Xu, B. Q.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Yang, L.

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2008).
[CrossRef]

Yao, X. F.

G. C. Jin, X. F. Yao, and N. K. Bao, “Applications of speckle metrology to vibration and deformation measurements of electronic devices,” in The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000 (IEEE, 2000), vol. 2, 253–255.
[CrossRef]

Yao, Y.

Y. B. Guo, Y. Yao, X. G. Di, and Ieee, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (IEEE, 2006), 1131–1135.
[CrossRef]

Yost, M.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

Zhang, D.

D. Zhang, X. Zhang, and G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

Zhang, J.

J. Zhang, G. C. Jin, S. P. Ma, and L. B. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).
[CrossRef]

Zhang, K.

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

Zhang, X.

D. Zhang, X. Zhang, and G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

Zhao, F.

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

Zhou, P.

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

Appl. Opt. (2)

Exp. Mech. (8)

B. Wattrisse, A. Chrysochoos, J. M. Muracciole, and M. Nemoz-Gaillard, “Analysis of strain localization during tensile tests by digital image correlation,” Exp. Mech. 41, 29–39 (2001).
[CrossRef]

P. Luo, Y. Chao, M. Sutton, and W. Peters, “Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision,” Exp. Mech. 33, 123–132(1993).
[CrossRef]

L. Robert, F. Nazaret, T. Cutard, and J. J. Orteu, “Use of 3-D digital image correlation to characterize the mechanical behavior of a fiber reinforced refractory castable,” Exp. Mech. 47, 761–773 (2007).
[CrossRef]

F. Barthelat, Z. Wu, B. C. Prorok, and H. D. Espinosa, “Dynamic torsion testing of nanocrystalline coatings using high-speed photography and digital image correlation,” Exp. Mech. 43, 331–340 (2003).
[CrossRef]

V. Tiwari, M. Sutton, and S. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial-differential correlation,” Exp. Mech. 29, 261–267(1989).
[CrossRef]

H. Lu and P. Cary, “Deformation measurements by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393–400 (2000).
[CrossRef]

D. Zhang, X. Zhang, and G. Cheng, “Compression strain measurement by digital speckle correlation,” Exp. Mech. 39, 62–65 (1999).
[CrossRef]

Exp. Tech. (1)

H. Jin and H. A. Bruck, “Pointwise digital image correlation using genetic algorithms,” Exp. Tech. 29, 36–39 (2005).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

K. Zhang, B. Xu, L. X. Tang, and H. M. Shi, “Modeling of binocular vision system for 3D reconstruction with improved genetic algorithms,” Int. J. Adv. Manuf. Technol. 29, 722–728(2006).
[CrossRef]

J. Biomed. Mater. Res. Part A (1)

M. A. Sutton, X. Ke, S. M. Lessner, M. Goldbach, M. Yost, F. Zhao, and H. W. Schreier, “Strain field measurements on mouse carotid arteries using microscopic three-dimensional digital image correlation,” J. Biomed. Mater. Res. Part A 84, 178–190 (2008).
[CrossRef]

J. Sandwich Struct. Mater. (1)

P. Compston, M. Styles, and S. Kalyanasundaram, “Low energy impact damage modes in aluminum foam and polymer foam sandwich structures,” J. Sandwich Struct. Mater. 8, 365–379 (2006).
[CrossRef]

Meas. Sci. Technol. (2)

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20 (2009).
[CrossRef]

Opt. Eng. (6)

P. Zhou and K. E. Goodson, “Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

H. Q. Jin and H. A. Bruck, “Theoretical development for pointwise digital image correlation,” Opt. Eng. 44, 067003(2005).
[CrossRef]

J. D. Helm, S. R. McNeill, and M. A. Sutton, “Improved three-dimensional image correlation for surface displacement measurement,” Opt. Eng. 35, 1911–1920 (1996).
[CrossRef]

C. Q. Davis and D. M. Freeman, “Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching,” Opt. Eng. 37, 1290–1298 (1998).
[CrossRef]

M. A. Sutton, S. R. McNeill, J. S. Jang, and M. Babai, “Effects of subpixel image-restoration on digital correlation error-estimates,” Opt. Eng. 27, 870–877 (1988).

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “High-speed digital image correlation: error estimations and applications,” Opt. Eng. 46, 051004–051007 (2007).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

J. Zhang, G. C. Jin, S. P. Ma, and L. B. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol. 35, 533–542(2003).
[CrossRef]

Opt. Lasers Eng. (1)

J.-J. Orteu, “3-D computer vision in experimental mechanics,” Opt. Lasers Eng. 47, 282–291 (2009).
[CrossRef]

Pattern Recogn. (1)

L. Oriat and E. Lantz, “Subpixel detection of the center of an object using a spectral phase algorithm on the image,” Pattern Recogn. 31, 761–771 (1998).
[CrossRef]

Proc. SPIE (1)

T. Becker, K. Splitthof, T. Siebert, and P. Kletting, “Error estimations of 3D digital image correlation measurements,” Proc. SPIE 6341, 63410F (2006).
[CrossRef]

Strain (2)

W. Tong, “An evaluation of digital image correlation criteria for strain mapping applications,” Strain 41, 167–175 (2005).
[CrossRef]

B. Pan, H. Xie, L. Yang, and Z. Wang, “Accurate measurement of satellite antenna surface using 3D digital image correlation technique,” Strain 45, 194–200 (2008).
[CrossRef]

Other (6)

M. Sutton, S. McNeill, J. Helm, and Y. Chao, “Advances in two-dimensional and three-dimensional computer vision,” in Photomechanics, P. K. Rasotgi, ed., Vol. 77 of Topics in Applied Physics (Springer-Verlag, 2000), pp. 323–372.
[CrossRef]

M. C. Pitter, C. W. See, and M. G. Somekh, “Fast subpixel digital image correlation using artificial neural networks,” in Proceedings of 2001 International Conference on Image Processing (ICIP 2001), Vol 2, 901–904 (IEEE, 2001).

T. Siebert, T. Becker, K. Spiltthof, I. Neumann, and R. Krupka, “Error estimations in digital image correlation technique,” in Advances in Experimental Mechanics V (Trans Tech, 2007), pp. 265–270.

Y. B. Guo, Y. Yao, X. G. Di, and Ieee, “Research on structural parameter optimization of binocular vision measuring system for parallel mechanism,” in Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation (IEEE, 2006), 1131–1135.
[CrossRef]

G. C. Jin, X. F. Yao, and N. K. Bao, “Applications of speckle metrology to vibration and deformation measurements of electronic devices,” in The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000 (IEEE, 2000), vol. 2, 253–255.
[CrossRef]

H. W. Schreier, “Investigation of two and three-dimensional image correlation techniques with applications in experimental mechanics,” Ph.D. thesis (University of South Carolina, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic of 3D-DIC system.

Fig. 2
Fig. 2

Procedure of 3D speckle image generation.

Fig. 3
Fig. 3

Pair of images captured by left- and right-hand cameras.

Fig. 4
Fig. 4

Correlation result using first-order NR iteration method.

Fig. 5
Fig. 5

3D shape reconstruction of the cylinder with radius 40 mm .

Fig. 6
Fig. 6

Left-hand noise level 1 correlation to ten right-hand images.

Fig. 7
Fig. 7

Left-hand noise level 2 correlation to ten right-hand images.

Fig. 8
Fig. 8

Left-hand noise level 3 correlation to ten right-hand images.

Fig. 9
Fig. 9

Left-hand noise level 4 correlation to ten right-hand images.

Fig. 10
Fig. 10

Left-hand noise level 5 correlation to ten right-hand images.

Fig. 11
Fig. 11

Left-hand noise level 6 correlation to ten right-hand images.

Fig. 12
Fig. 12

Left-hand noise level 7 correlation to ten right-hand images.

Fig. 13
Fig. 13

Left-hand noise level 8 correlation to ten right-hand images.

Fig. 14
Fig. 14

Left-hand noise level 9 correlation to ten right-hand images.

Fig. 15
Fig. 15

Left-hand noise level 10 correlation to ten right-hand images.

Fig. 16
Fig. 16

3D shape reconstructed by using (a) first-order NR, (b) coefficient fitting, (c) second-order NR method, (d) gradient-based method.

Fig. 17
Fig. 17

Systematic errors of four subpixel registration algorithm for rigid 3D object translation (using a 29 × 29 pixel subset).

Tables (2)

Tables Icon

Table 1 Parameters of 3D Speckle Image Generation

Tables Icon

Table 2 Relative Time Consumption

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

λ p = K [ R T 0 1 ] 1 P ,
J = i = 1 N ( Δ X w i 2 + Δ Y w i 2 + Δ Z w i 2 ) N ,
ξ ( X W , Y W , Z W ) = 0 ,
λ L x L = P L X W ,
P L = K L [ R L T L 0 1 ] 1
I ( X W , Y W , Z W ) = k = 1 s I k 0 exp [ ( X W X W k ) 2 + ( Y W Y W k ) 2 + ( Z W Z W k ) 2 R 0 2 ] ,
ξ ( X W , Y W , Z W ) = 0.
C f , g ( h ) = x = M M y = M M [ f ( x , y ) f m x = M M y = M M [ f ( x , y ) f m ] 2 g ( x + ξ , y + η ) g m x = M M y = M M [ g ( x + ξ , y + η ) g m ] 2 ] 2 ,
K L = [ 4000 0 256 0 4000 256 0 0 1 ]
R L = [ 0.1305 0 0.9914 0.9914 0 0.1305 0 1 0 ]
T L = [ 396.5579 52.2105 0 ]
K R = [ 4000 0 256 0 4000 256 0 0 1 ]
R R = [ 0.1305 0 0.9914 0.9914 0 0.1305 0 1 0 ]
T R = [ 396.5579 52.2105 0 ]

Metrics