Abstract

We present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry–Perot sensor, transferring the detected signals onto the laser. An H13C14N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197–R216 (2004).
    [CrossRef]
  2. A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).
  3. K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000).
    [CrossRef]
  4. R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
    [CrossRef]
  5. J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Demonstration of a passive sub-picostrain fiber strain sensor,” Opt. Lett. 30, 1923–1925 (2005).
    [CrossRef] [PubMed]
  6. T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
    [CrossRef]
  7. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
    [CrossRef]
  8. N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
    [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  10. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [CrossRef]
  11. R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573–575 (1973).
    [CrossRef]
  12. S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Special Publication 260-137, National Institute of Standards and Technology, Gaithersburg, Md., 1998.
  13. A. Arie, B. Lissak, and M. Tur, “Static Fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849–1855 (1999).
    [CrossRef]
  14. W. Demotröder, Laser Spectroscopy (Springer-Verlag, 2003).
  15. A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621(1982).
    [CrossRef]
  16. T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
    [CrossRef]
  17. A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).
  18. A. Dandridge and H. F. Taylor, “Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers,” IEEE Trans. Microwave Theory Tech. 30, 1726–1738 (1982).
    [CrossRef]
  19. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
    [CrossRef]

2010

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

2009

T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
[CrossRef]

2008

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

2007

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

2005

2004

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197–R216 (2004).
[CrossRef]

2001

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

2000

K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000).
[CrossRef]

1999

1997

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621(1982).
[CrossRef]

A. Dandridge and H. F. Taylor, “Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers,” IEEE Trans. Microwave Theory Tech. 30, 1726–1738 (1982).
[CrossRef]

1973

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573–575 (1973).
[CrossRef]

Alavie, T.

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

Arie, A.

Barger, R. L.

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573–575 (1973).
[CrossRef]

Beverini, N.

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Brewer, R. G.

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621(1982).
[CrossRef]

Brown, T.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000).
[CrossRef]

Chow, J. H.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
[CrossRef]

J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Demonstration of a passive sub-picostrain fiber strain sensor,” Opt. Lett. 30, 1923–1925 (2005).
[CrossRef] [PubMed]

Cranch, G. A.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197–R216 (2004).
[CrossRef]

A. Dandridge and H. F. Taylor, “Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers,” IEEE Trans. Microwave Theory Tech. 30, 1726–1738 (1982).
[CrossRef]

Demotröder, W.

W. Demotröder, Laser Spectroscopy (Springer-Verlag, 2003).

DeVoe, R. G.

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621(1982).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Falciai, R.

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Gilbert, S. L.

W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
[CrossRef]

S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Special Publication 260-137, National Institute of Standards and Technology, Gaithersburg, Md., 1998.

Gray, M. B.

Guha-Thakurta, A.

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573–575 (1973).
[CrossRef]

Hamid, S.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Jensen, B.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000).
[CrossRef]

Kalli, K.

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

Kirkendall, C. K.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197–R216 (2004).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lam, T. T.-Y.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
[CrossRef]

Lissak, B.

Littler, I. C. M.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
[CrossRef]

J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Demonstration of a passive sub-picostrain fiber strain sensor,” Opt. Lett. 30, 1923–1925 (2005).
[CrossRef] [PubMed]

Maaskant, R.

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

Maccioni, E.

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

McClelland, D. E.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
[CrossRef]

J. H. Chow, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Demonstration of a passive sub-picostrain fiber strain sensor,” Opt. Lett. 30, 1923–1925 (2005).
[CrossRef] [PubMed]

Measures, R. M.

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

Morganti, M.

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

Mow-Lowry, C. M.

T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Othenos, A.

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

Rizkalla, S. H.

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

Rogowski, R.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000).
[CrossRef]

Schenzle, A.

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621(1982).
[CrossRef]

Shaddock, D. A.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

Slagmolen, B. J. J.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

Sorem, M. S.

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573–575 (1973).
[CrossRef]

Stefani, F.

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

Swann, W. C.

W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
[CrossRef]

S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Special Publication 260-137, National Institute of Standards and Technology, Gaithersburg, Md., 1998.

Tadros, G.

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

Taylor, H. F.

A. Dandridge and H. F. Taylor, “Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers,” IEEE Trans. Microwave Theory Tech. 30, 1726–1738 (1982).
[CrossRef]

Trono, C.

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

Tur, M.

Wang, C. M.

S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Special Publication 260-137, National Institute of Standards and Technology, Gaithersburg, Md., 1998.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Willsky, A. S.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

Wood, K.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000).
[CrossRef]

Am. J. Phys.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Appl. Phys. Lett.

R. L. Barger, M. S. Sorem, and J. L. Hall, “Frequency stabilization of a cw dye laser,” Appl. Phys. Lett. 22, 573–575 (1973).
[CrossRef]

Cem. Concr. Compos.

R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. Guha-Thakurta, “Fiber-optic Bragg grating sensors for bridge monitoring,” Cem. Concr. Compos. 19, 21–31 (1997).
[CrossRef]

IEEE J. Quantum. Electron.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum. Electron. 46, 1178–1183 (2010)
[CrossRef]

IEEE Sens. J.

T. T.-Y. Lam, J. H. Chow, C. M. Mow-Lowry, D. E. McClelland, and I. C. M. Littler, “A stabilized fiber laser for high-resolution low-frequency strain sensing,” IEEE Sens. J. 9, 983–986(2009).
[CrossRef]

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensors,” IEEE Sens. J. 8, 1161–1172 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

A. Dandridge and H. F. Taylor, “Correlation of low-frequency intensity and frequency fluctuations in GaAlAs lasers,” IEEE Trans. Microwave Theory Tech. 30, 1726–1738 (1982).
[CrossRef]

J. Lightwave Technol.

J. Opt. A: Pure Appl. Opt.

N. Beverini, E. Maccioni, M. Morganti, F. Stefani, R. Falciai, and C. Trono, “Fiber laser strain sensor device,” J. Opt. A: Pure Appl. Opt. 9, 958–962 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D 37, R197–R216 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev. A

A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A 25, 2606–2621(1982).
[CrossRef]

Smart Mater. Struct.

K. Wood, T. Brown, R. Rogowski, and B. Jensen, “Fiber optic sensors for health monitoring of morphing airframes: I. Bragg grating strain and temperature sensor,” Smart Mater. Struct. 9, 163–169 (2000).
[CrossRef]

Other

A. Othenos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech, 1999).

S. L. Gilbert, W. C. Swann, and C. M. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530–1560 nm wavelength calibration—SRM 2519,” NIST Special Publication 260-137, National Institute of Standards and Technology, Gaithersburg, Md., 1998.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, 1996).

W. Demotröder, Laser Spectroscopy (Springer-Verlag, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

H 13 C 14 N gas cell used in the experiment.

Fig. 2
Fig. 2

Schematic of the experiment used to measure the frequency stability of the reference/readout system. The laser was locked to an H 13 C 14 N gas cell (HCN1) using a digi tal demodulation and control system run on an FPGA. The frequency stability was read out using a separate H 13 C 14 N gas cell (HCN2).

Fig. 3
Fig. 3

Frequency noise of the diode laser when it is (a) free running and (b) locked to an H 13 C 14 N cell.

Fig. 4
Fig. 4

Schematic of the setup used for the experiment. The reflected power of the FFP sensor was fed back to the current of the laser to lock the laser to the FFP. The transmitted power was used as an out-of-loop readout.

Fig. 5
Fig. 5

Scan of (a) FFP reflected power, (b) FFP error signal, (c) H 13 C 14 N transmitted power, and (d) H 13 C 14 N error signal. (i) Shows the readout region of H 13 C 14 N error signal.

Fig. 6
Fig. 6

Root spectral density of the strain resolution of (a) the free-running system, (b) the laser locked to the FFP and (c) the equivalent stabilized frequency noise. The low frequency noise floor is due to measurement noise in the readout. The calibration signal of 0.43 με / Hz at 216 Hz appears 3 orders of magnitude above the noise floor. Small features from 3 to 30 Hz are due to the mechanical resonances of the sensor isolation chamber. The solid horizontal black line indicates a resolution of 10   picostrain / Hz .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ν sens / ν opt = k ε ,
S = Δ ν opt + Δ ν sens = Δ ν opt + ν opt k ε .
ε eq = Δ ν opt / ν opt k .

Metrics