Abstract

Heterodyne detection research is carried out on a mode-locked pulse laser using an acousto-optic frequency shifter (AOFS). Theoretical calculation and numerical simulation of the beat frequency of the mode-locked pulse were carried out, and the results show that the frequency offset can be calculated according to the beat period of the pulse waveform, and the offset is the frequency difference between the two adjacent longitudinal modes. Experiments were implemented with a self-built mode-locked laser using an AOFS to simulate the frequency shift of the detection laser induced by the object, the coherent beat frequency of the signal light and local oscillation light that were observed on the surface of the detector. The beat frequency wave was processed by filtering to obtain the frequency shift of the signal light. The experimental results are in good agreement with the numerical simulation.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, N. Menyuk, and W. E. DeFeo, “Experimental comparison of heterodyne and direct detection for pulsed differential absorption CO2 lidar,” Appl. Opt. 22, 682–689 (1983).
    [CrossRef] [PubMed]
  2. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092–5099 (2004).
    [CrossRef] [PubMed]
  3. K. P. Chan, D. K. Killinger, and N. Sugimoto, “Heterodyne Doppler 1 μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence,” Appl. Opt. 30, 2617–2627 (1991).
    [CrossRef] [PubMed]
  4. M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
    [CrossRef]
  5. Z. Ma, C. Zhang, P. Ou, G. Luo, and Z. Zhang, “Application of fiber interferometer in coherent Doppler lidar,” Chin. Opt. Lett. 6, 261–263 (2008).
    [CrossRef]
  6. C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).
  7. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
    [CrossRef]
  8. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  9. B. Bouma, G. J. Tearney, S. A. Boppart, M. R.Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3laser source,” Opt. Lett. 201486–1488 (1995).
    [CrossRef] [PubMed]
  10. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29250–252 (2004).
    [CrossRef] [PubMed]
  11. T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, “Long-term carrier-envelope phase coherence,” Opt. Lett. 27, 1436–1438 (2002).
    [CrossRef]
  12. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28947–949 (2003).
    [CrossRef] [PubMed]
  13. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
    [CrossRef] [PubMed]
  14. Z. Wei, Y. Kobayashi, and K. Torizuka, “Relative carrier-envelope phase dynamics between passively synchronized Ti:sapphire and Cr:forsterite lasers,” Opt. Lett. 27, 2121–2123(2002).
    [CrossRef]
  15. L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
    [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  17. K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurement of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
    [CrossRef]
  18. P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” IEEE J. Quantum Electron. 18, 145–154(1986).
  19. J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

2008 (1)

2007 (1)

J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

2004 (3)

2003 (1)

2002 (2)

2001 (3)

C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

1995 (1)

1991 (2)

K. P. Chan, D. K. Killinger, and N. Sugimoto, “Heterodyne Doppler 1 μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence,” Appl. Opt. 30, 2617–2627 (1991).
[CrossRef] [PubMed]

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

1986 (1)

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” IEEE J. Quantum Electron. 18, 145–154(1986).

1983 (1)

1980 (1)

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurement of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Alouini, M.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Amzajerdian, F.

Barnes, B. W.

Berginc, G.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Beyon, J. Y.

Boppart, S. A.

Bouchardy, A. M.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Bouma, B.

Brezinski, M. E.

Chan, K. P.

Chazelas, J.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Chen, S.

C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).

Cundiff, S. T.

T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, “Long-term carrier-envelope phase coherence,” Opt. Lett. 27, 1436–1438 (2002).
[CrossRef]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Davis, R. E.

DeFeo, W. E.

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29250–252 (2004).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Dolfi, D.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Fortier, T. M.

Fujimoto, J. G.

Gopinath, J. T.

Granger, G.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Grisard, A.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Hall, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurement of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Hall, J. L.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hee, M. R.

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Ippen, E. P.

Ismail, S.

Jones, D. J.

T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, “Long-term carrier-envelope phase coherence,” Opt. Lett. 27, 1436–1438 (2002).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Jørgensen, C. G.

Kaertner, F. X.

Kapteyn, H. C.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Kavaya, M. J.

Kenney-Wallace, G.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurement of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Killinger, D. K.

Kim, J.

Kobayashi, Y.

Koch, G. J.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Kolodziejski, L. A.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Kuzucu, O.

Lallier, E.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Luo, G.

Ma, L.-S.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Ma, Z.

Z. Ma, C. Zhang, P. Ou, G. Luo, and Z. Zhang, “Application of fiber interferometer in coherent Doppler lidar,” Chin. Opt. Lett. 6, 261–263 (2008).
[CrossRef]

C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).

Menyuk, N.

Morvan, L.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Murnane, M. M.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Newbury, N. R.

Nicholson, J. W.

Normandin, X.

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Ou, P.

Penzkofer, A.

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” IEEE J. Quantum Electron. 18, 145–154(1986).

Petrich, G. S.

Petros, M.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Sala, K.

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurement of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

Schibli, T. R.

Shelton, R. K.

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Shen, L.

C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).

Singh, U. N.

Sperber, P.

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” IEEE J. Quantum Electron. 18, 145–154(1986).

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Sugimoto, N.

Tandon, S. N.

Tearney, G. J.

Toida, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Torizuka, K.

Vay, S.

Wang, C.

C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).

Wang, J.

J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

Washburn, B. R.

Wei, Z.

Windeler, R. S.

T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, “Long-term carrier-envelope phase coherence,” Opt. Lett. 27, 1436–1438 (2002).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Xu, S.

C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).

Yan, M. F.

Yang, S.

J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

Ye, J.

T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, “Long-term carrier-envelope phase coherence,” Opt. Lett. 27, 1436–1438 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

Yu, J.

Zhang, C.

Zhang, H.

J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

Zhang, Z.

Zhao, C.

J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

Acta Opt. Sin. (1)

C. Wang, S. Chen, Z. Ma, S. Xu, and L. Shen, “LDA pumped Nd:YAG regenerative amplifier of single longitudinal mode laser pulse,” Acta Opt. Sin. 21, 820–824(2001).

Appl. Opt. (3)

Appl. Phys. B (1)

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Chin. J. Lasers (1)

J. Wang, H. Zhang, C. Zhao, and S. Yang, “Injection seeding Nd∶YAG laser and its application in heterodyne detection,” Chin. J. Lasers 34, 186–190 (2007), in Chinese.

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (2)

K. Sala, G. Kenney-Wallace, and G. Hall, “CW autocorrelation measurement of picosecond laser pulses,” IEEE J. Quantum Electron. 16, 990–996 (1980).
[CrossRef]

P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” IEEE J. Quantum Electron. 18, 145–154(1986).

Opt. Lett. (5)

Proc. SPIE (1)

L. Morvan, M. Alouini, A. Grisard, E. Lallier, D. Dolfi, X. Normandin, A. M. Bouchardy, G. Berginc, G. Granger, and J. Chazelas, “Two optronic identification techniques: lidar-radar and multispectral polarimetric imaging,” Proc. SPIE 5613, 76–87 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3749–3771 (2001).
[CrossRef]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293, 1286–1289 (2001).
[CrossRef] [PubMed]

Other (1)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simulated beat pattern when Δ f = 80 MHz .

Fig. 2
Fig. 2

Envelope of beat-frequency waveform.

Fig. 3
Fig. 3

Beat frequency spectrum of a mode-locked laser.

Fig. 4
Fig. 4

Experimental setup of the mode-locked laser: (a) Q-switched active mode-locked pulse and (b) light path of the beat frequency.

Fig. 5
Fig. 5

Active mode-locked pulse using the Q-switch method.

Fig. 6
Fig. 6

Single pulse waveform.

Fig. 7
Fig. 7

Beat-frequency waveform when Δ f = 80 MHz .

Fig. 8
Fig. 8

Beat pattern and waveform after low pass filter when Δ f = 80 MHz .

Fig. 9
Fig. 9

Frequency measurement [19].

Fig. 10
Fig. 10

Beat pattern and spectrum analysis when Δ f = 80 MHz .

Fig. 11
Fig. 11

Experimental results of beat frequency when Δ f = 40 80 MHz .

Tables (1)

Tables Icon

Table 1 Beat Period Measurement when Δ f = 80 MHz

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E q ( z , t ) = E q exp { j [ ω q ( t z v ) + φ q ) ] } ,
E m ( t ) = E m exp { j [ ( ω 0 + m ω ) t + φ 0 + m β ] }
E m ( t ) = E m exp { j [ ( ω 0 + m ω + Δ ω ) t + φ 0 + m β ] } ,
I ( t ) = [ 0 m E m ( t ) + 0 m E m ( t ) ] 2 = { 0 m [ E m ( t ) + E m ( t ) ] } 2 = 0 m 0 n [ E m ( t ) + E m ( t ) ] [ E n ( t ) + E n ( t ) ] .
[ E m ( t ) + E m ( t ) ] [ E n ( t ) + E n ( t ) ] = E 0 2 [ 1 + exp ( j Δ ω t ) ] 2 exp { j [ ( m + n ) ω t + 2 ( ω 0 t + φ 0 ) ] } .
I ( t ) = E 0 2 sin 2 1 2 ( m + 1 ) ( ω t + β ) sin 2 1 2 ( ω t + β ) [ 1 + exp ( j Δ ω t ) ] 2 exp [ j 2 ( ω 0 t + φ 0 ) ] sin 2 1 2 ( m + 1 ) ( ω t + β ) sin 2 1 2 ( ω t + β ) ( 1 + cos Δ ω t ) 2 .

Metrics