Abstract

We propose an interpolation method to effectively improve the visual quality of the reconstructed integral image. Specifically, the dot-pattern output plane image (OPI) is first generated based on the pickup EIs by using pixel-to-pixel mapping. Then all the zero pixels in the dot-pattern OPI are interpolated by utilizing a non-zero-pixel derivation technique, and the final reconstructed integral image is obtained. To confirm the feasibility of this method, some computational experiments were carried out for test plane images with different depths. Quantitative experimental analysis shows that our proposed method has good robustness and can largely enhance the viewing quality of the reconstructed integral image compared to the plane-by-plane reconstruction technique and the conventional pixel-to-pixel mapping and interpolation technique.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Martinez-Cuenca, G. Saavedra, R. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
    [CrossRef]
  2. J.-Y. Son, Sh.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” J. Display Technol. 4, 324–331 (2008).
    [CrossRef]
  3. J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying 3D images,” Proc. IEEE 94, 502–524 (2006).
    [CrossRef]
  4. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [CrossRef]
  5. J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46, 7697–7708 (2007).
    [CrossRef] [PubMed]
  6. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
    [CrossRef]
  7. Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488–5496 (2002).
    [CrossRef] [PubMed]
  8. Y. Frauel and B. Javidi, “Digital three-dimensional object reconstruction and correlation based on integral imaging,” Proc. SPIE 5006, 83–91 (2003).
    [CrossRef]
  9. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
    [CrossRef] [PubMed]
  10. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
    [CrossRef] [PubMed]
  11. S.-H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
    [CrossRef] [PubMed]
  12. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. Part 1 44, 8016–8018(2005).
    [CrossRef]
  13. D.-H. Shin, C.-W. Tan, and B.-G. Lee, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47, 6656–6665 (2008).
    [CrossRef] [PubMed]
  14. D.-H. Shin, D.-J. Kim, and B.-G. Lee, “Computational integral imaging reconstruction method of 3D images based on pixel-to-pixel mapping and interpolation technique,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB18.
  15. Y.-S. Hwang, S.-H. Hong, and B. Javidi, “Free view 3-D visualization of occluded objects by using computational synthetic aperture integral imaging,” J. Display Technol. 3, 64–70(2007).
    [CrossRef]
  16. D.-H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express 15, 12039–12049 (2007).
    [CrossRef] [PubMed]
  17. M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Display Technol. 5, 61–65 (2009).
    [CrossRef]

2009 (2)

R. Martinez-Cuenca, G. Saavedra, R. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Display Technol. 5, 61–65 (2009).
[CrossRef]

2008 (2)

2007 (3)

2006 (3)

S.-H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
[CrossRef] [PubMed]

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying 3D images,” Proc. IEEE 94, 502–524 (2006).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

2005 (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. Part 1 44, 8016–8018(2005).
[CrossRef]

2004 (1)

2003 (2)

Y. Frauel and B. Javidi, “Digital three-dimensional object reconstruction and correlation based on integral imaging,” Proc. SPIE 5006, 83–91 (2003).
[CrossRef]

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

Arimoto, H.

Cho, M.

Frauel, Y.

Y. Frauel and B. Javidi, “Digital three-dimensional object reconstruction and correlation based on integral imaging,” Proc. SPIE 5006, 83–91 (2003).
[CrossRef]

Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488–5496 (2002).
[CrossRef] [PubMed]

Hong, S.-H.

Hwang, D.-C.

Hwang, Y.-S.

Hyun, J.-B.

Jang, J.-S.

Javidi, B.

R. Martinez-Cuenca, G. Saavedra, R. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

M. Cho and B. Javidi, “Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels,” J. Display Technol. 5, 61–65 (2009).
[CrossRef]

J.-Y. Son, Sh.-H. Kim, D.-S. Kim, B. Javidi, and K.-D. Kwack, “Image-forming principle of integral photography,” J. Display Technol. 4, 324–331 (2008).
[CrossRef]

Y.-S. Hwang, S.-H. Hong, and B. Javidi, “Free view 3-D visualization of occluded objects by using computational synthetic aperture integral imaging,” J. Display Technol. 3, 64–70(2007).
[CrossRef]

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying 3D images,” Proc. IEEE 94, 502–524 (2006).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

S.-H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
[CrossRef] [PubMed]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[CrossRef] [PubMed]

Y. Frauel and B. Javidi, “Digital three-dimensional object reconstruction and correlation based on integral imaging,” Proc. SPIE 5006, 83–91 (2003).
[CrossRef]

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528–3541 (2003).
[CrossRef] [PubMed]

Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488–5496 (2002).
[CrossRef] [PubMed]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[CrossRef]

Kim, D.-J.

D.-H. Shin, D.-J. Kim, and B.-G. Lee, “Computational integral imaging reconstruction method of 3D images based on pixel-to-pixel mapping and interpolation technique,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB18.

Kim, D.-S.

Kim, E.-S.

J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46, 7697–7708 (2007).
[CrossRef] [PubMed]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. Part 1 44, 8016–8018(2005).
[CrossRef]

Kim, Sh.-H.

Kishk, S.

Kwack, K.-D.

Lee, B.

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. Part 1 44, 8016–8018(2005).
[CrossRef]

Lee, B.-G.

D.-H. Shin, C.-W. Tan, and B.-G. Lee, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47, 6656–6665 (2008).
[CrossRef] [PubMed]

D.-H. Shin, D.-J. Kim, and B.-G. Lee, “Computational integral imaging reconstruction method of 3D images based on pixel-to-pixel mapping and interpolation technique,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB18.

Martinez-Corral, R.

R. Martinez-Cuenca, G. Saavedra, R. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, R. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, R. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Shin, D.-H.

D.-H. Shin, C.-W. Tan, and B.-G. Lee, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47, 6656–6665 (2008).
[CrossRef] [PubMed]

J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46, 7697–7708 (2007).
[CrossRef] [PubMed]

D.-H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express 15, 12039–12049 (2007).
[CrossRef] [PubMed]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. Part 1 44, 8016–8018(2005).
[CrossRef]

D.-H. Shin, D.-J. Kim, and B.-G. Lee, “Computational integral imaging reconstruction method of 3D images based on pixel-to-pixel mapping and interpolation technique,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB18.

Son, J.-Y.

Stern, A.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Tan, C.-W.

Yoo, H.

Appl. Opt. (3)

J. Display Technol. (3)

Jpn. J. Appl. Phys. Part 1 (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. Part 1 44, 8016–8018(2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (3)

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying 3D images,” Proc. IEEE 94, 502–524 (2006).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, R. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Proc. SPIE (1)

Y. Frauel and B. Javidi, “Digital three-dimensional object reconstruction and correlation based on integral imaging,” Proc. SPIE 5006, 83–91 (2003).
[CrossRef]

Other (1)

D.-H. Shin, D.-J. Kim, and B.-G. Lee, “Computational integral imaging reconstruction method of 3D images based on pixel-to-pixel mapping and interpolation technique,” in Digital Holography and Three-Dimensional Imaging (DH), OSA Technical Digest (CD) (Optical Society of America, 2009), paper DWB18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Pickup process and (b) display process in the II system.

Fig. 2
Fig. 2

Schematic diagram of the PPRT method.

Fig. 3
Fig. 3

Principle of the PMIT method: (a) pixel-to-pixel mapping process and (b) interpolation process to fill zero pixel.

Fig. 4
Fig. 4

Schematic diagram of the proposed interpolation algorithm.

Fig. 5
Fig. 5

Interpolation algorithm based on non-zero-pixel derivation: (a) non-zero pixel with all zero pixels around it and (b) non-zero pixel with some other non-zero pixels around it.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

Test plane image: Lena.

Fig. 8
Fig. 8

EIs of Lena obtained through the pinhole array.

Fig. 9
Fig. 9

Computational reconstruction process: (a) dot-pattern OPI, (b) FRI based on linear interpolation method, and (c) FRI based on our proposed interpolation method.

Fig. 10
Fig. 10

PSNR results for the dot-pattern OPI and its FRI (x coordinate represents sequence of images in Fig. 9 from left to right).

Fig. 11
Fig. 11

PSNR results for the FRI using linear interpolation method and proposed interpolation method (x coordinate represents the distance z between the pinhole array and the output plane).

Fig. 12
Fig. 12

PSNR results for the reconstructed image of Lena based on the PPRT and the PMIT using our proposed interpolation algorithm (x-coordinate represents the distance z between the pinhole-array and the output plane).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Gray ( i + m , j + n ) = { Gray ( i + m , j + n ) Pixel ( i + m , j + n ) is non-zero pixel Gray ( i + m , j + n ) + Gray ( i , j ) Pixel ( i + m , j + n ) is zero pixel ,
Num ( i + m , j + n ) = { Num ( i + m , j + n ) Pixel ( i + m , j + n ) is non-zero pixel Num ( i + m , j + n ) + 1 Pixel ( i + m , j + n ) is zero pixel .
Gray ¯ ( i + m , j + n ) = Gray ( i + m , j + n ) Num ( i + m , j + n ) .
PSNR = 10 log 10 255 2 1 M × N i = 1 M j = 1 N [ O ( i , j ) R ( i , j ) ] 2 ,

Metrics