Abstract

We demonstrate a simple configuration for generating a double Brillouin frequency shift through the circulation of an odd-order Brillouin Stokes signal. It is operated based on cascaded Brillouin scattering in single-mode optical fibers that behave as the Brillouin gain media. A four-port circulator is incorporated into the setup to circulate the odd-order Brillouin Stokes signal in the fiber. It thus initiates a higher order Brillouin Stokes signal, which is double Brillouin frequency downshifted from the input signal. For the 5km long fiber, the Brillouin pump power at 23mW gives a clean output spectrum with 30dB sideband suppression ratio. The output signal is 0.174nm or 21.7GHz downshifted from the input signal.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fibre Optics, 4th ed. (Elsevier, 2006), pp. 329–367.
  2. D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
    [CrossRef]
  3. H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
    [CrossRef]
  4. R. Posey, Jr., and S. T. Vohra, “An eight-channel fiber-optic Bragg grating and stimulated Brillouin sensor system for simultaneous temperature and strain measurements,” IEEE Photon. Technol. Lett. 11, 1641–1643 (1999).
    [CrossRef]
  5. J. Giang, S. Staines, M. Blake, and S. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Appl. Opt. 46, 5928–5932 (2007).
    [CrossRef]
  6. T. Chang, D. Y. Li, T. E. Koscica, H. L. Cui, Q. Sui, and L. Jia, “Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering,” Appl. Opt. 47, 6202–6206 (2008).
    [CrossRef] [PubMed]
  7. D. Ito, and F. Ito, “Cost-effective bandwidth-reduced Brillouin optical time domain reflectometry using a reference Brillouin scattering beam,” Appl. Opt. 48, 4302–4309(2009).
    [CrossRef] [PubMed]
  8. Y. Shen, X. Zhang, and K. Chen, “All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser,” J. Lightwave Technol. 23, 1860–1865 (2005).
    [CrossRef]
  9. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves,” J. Lightwave Technol. 24, 295–304(2006).
    [CrossRef]
  10. M. H. Al-Mansoori, S. Saharudin, H. Abdul-Rashid, M. A. Mahdi, and M. K. Abdullah, “Characterization of a multiwavelength Brillouin-erbium fiber laser based on a linear cavity configuration,” Appl. Opt. 44, 2827–2831(2005).
    [CrossRef] [PubMed]
  11. D. S. Lim, H. K. Lee, K. H. Kim, S. B. Kang, J. T. Ahn, and Min-Yong Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Opt. Lett. 23, 1671–1673 (1998).
    [CrossRef]
  12. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27, 5038–5043(2009).
    [CrossRef]
  13. M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
    [CrossRef]
  14. Toshio Kurashima, Tsuneo Horiguchi, Nobuyuki Yoshizawa, Hidenobu Tada, and Mitsuhiro Tateda, “Measurement of distributed strain due to laying and recovery of submarine optical fiber cable,” Appl. Opt. 30, 334–337 (1991).
    [CrossRef] [PubMed]
  15. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
    [CrossRef]
  16. G. P. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley-Blackwell, 2005).
    [CrossRef]

2010 (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

2009 (2)

2008 (3)

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
[CrossRef]

T. Chang, D. Y. Li, T. E. Koscica, H. L. Cui, Q. Sui, and L. Jia, “Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering,” Appl. Opt. 47, 6202–6206 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (2)

1999 (1)

R. Posey, Jr., and S. T. Vohra, “An eight-channel fiber-optic Bragg grating and stimulated Brillouin sensor system for simultaneous temperature and strain measurements,” IEEE Photon. Technol. Lett. 11, 1641–1643 (1999).
[CrossRef]

1998 (1)

1996 (1)

D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
[CrossRef]

1991 (1)

Abdullah, M. K.

Abdul-Rashid, H.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fibre Optics, 4th ed. (Elsevier, 2006), pp. 329–367.

G. P. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley-Blackwell, 2005).
[CrossRef]

Ahmad, H.

M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
[CrossRef]

Ahn, J. T.

Alhassen, F.

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

Al-Mansoori, M. H.

Ania Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Biglary, M.

M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
[CrossRef]

Birks, T. A.

D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
[CrossRef]

Blake, M.

Chan, H. M.

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

Chang, T.

Chen, K.

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Cui, H. L.

Culverhouse, D. O.

D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
[CrossRef]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Farwell, S. G.

D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
[CrossRef]

Finch, O.

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

Giang, J.

Hannover, D.

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Harun, S. W.

M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
[CrossRef]

Horiguchi, Tsuneo

Huang, R.

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

Ito, D.

Ito, F.

Jeon, Min-Yong

Jia, L.

Jiang, S.

Junker, M.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Kang, S. B.

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Kim, K. H.

Koscica, T. E.

Kurashima, Toshio

Lee, H. K.

Lee, H. P.

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

Li, D. Y.

Lim, D. S.

Mahdi, M. A.

Park, C. S.

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Posey, R.

R. Posey, Jr., and S. T. Vohra, “An eight-channel fiber-optic Bragg grating and stimulated Brillouin sensor system for simultaneous temperature and strain measurements,” IEEE Photon. Technol. Lett. 11, 1641–1643 (1999).
[CrossRef]

Russell, P. S. J.

D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
[CrossRef]

Saharudin, S.

Schneider, T.

Shen, Y.

Shirazi, M. R.

M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
[CrossRef]

Staines, S.

Sui, Q.

Tada, Hidenobu

Tateda, Mitsuhiro

Thambiratnam, K.

M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
[CrossRef]

Tomov, I. V.

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Vohra, S. T.

R. Posey, Jr., and S. T. Vohra, “An eight-channel fiber-optic Bragg grating and stimulated Brillouin sensor system for simultaneous temperature and strain measurements,” IEEE Photon. Technol. Lett. 11, 1641–1643 (1999).
[CrossRef]

Ward, J.

D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
[CrossRef]

Yoshizawa, Nobuyuki

Zhang, X.

Appl. Opt. (5)

IEEE Photon. Technol. Lett. (3)

D. O. Culverhouse, T. A. Birks, S. G. Farwell, J. Ward, and P. S. J. Russell, “40 MHz all-fiber acoustooptic frequency shifter,” IEEE Photon. Technol. Lett. 8, 1636–1637 (1996).
[CrossRef]

H. M. Chan, R. Huang, F. Alhassen, O. Finch, I. V. Tomov, C. S. Park, and H. P. Lee, “A compact all-fiber LPG-AOTF frequency shifter on single-mode fiber and its application to vibration measurement,” IEEE Photon. Technol. Lett. 20, 1572–1574(2008).
[CrossRef]

R. Posey, Jr., and S. T. Vohra, “An eight-channel fiber-optic Bragg grating and stimulated Brillouin sensor system for simultaneous temperature and strain measurements,” IEEE Photon. Technol. Lett. 11, 1641–1643 (1999).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. A Pure Appl. Opt. (1)

M. R. Shirazi, M. Biglary, S. W. Harun, K. Thambiratnam, and H. Ahmad, “Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity,” J. Opt. A Pure Appl. Opt. 10, 055101 (2008).
[CrossRef]

Nature Photon. (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nature Photon. 4, 231–235 (2010).
[CrossRef]

Opt. Lett. (1)

Other (2)

G. P. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley-Blackwell, 2005).
[CrossRef]

G. P. Agrawal, Nonlinear Fibre Optics, 4th ed. (Elsevier, 2006), pp. 329–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Proposed experimental setup for double Brillouin frequency shifter.

Fig. 2
Fig. 2

Characteristics of BS2 power generated from different spools of fiber by varying input BP powers.

Fig. 3
Fig. 3

Power evolution of BS2 for 3 km long SMF with the increment of BP powers.

Fig. 4
Fig. 4

(a) Optical spectra at the output signals by varying input BP powers and (b) optical spectrum at the input and output of 10 km long SMF.

Tables (1)

Tables Icon

Table 1 Properties of Four-Port Circulator Used in Experiment

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v B = 2 n p v A λ p ,

Metrics