Abstract

In this paper, an asymmetric photonic crystal waveguide is proposed for flat band slow light transmission. Two structural parameters of one cladding layer of the waveguide are carefully adjusted. They are the refractive index of the liquid infiltrated in the cladding on one side and the radius of the air holes in the infiltrated cladding. In such an asymmetric waveguide, we can achieve a very flat band corresponding to high group index such as 29.4 and low dispersion (104ps2/km) for Δω/ω=1.46%. It is found that the value of ngΔω/ω of the proposed waveguide can reach 0.429 and this waveguide can also yield a significant increase in the group index–bandwidth product ngΔω/ω and improve the bandwidth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
    [Crossref]
  2. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [Crossref] [PubMed]
  3. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [Crossref] [PubMed]
  4. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
    [Crossref]
  5. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E. 64, 056604 (2001).
    [Crossref]
  6. J. E. McMillan, X. D. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235–1237 (2006).
    [Crossref] [PubMed]
  7. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
    [Crossref]
  8. T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
    [Crossref]
  9. L. H. Frandsen, A. V. Lavrinenko, J. F. Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [Crossref] [PubMed]
  10. J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
    [Crossref]
  11. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
    [Crossref] [PubMed]
  12. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [Crossref] [PubMed]
  13. L. Dai and C. Jiang, “Ultrawideband low dispersion slow light waveguides,” J. Lightwave Technol. 27, 2862–2868 (2009).
    [Crossref]
  14. S. Rawal, R. K. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325 (2009).
    [Crossref] [PubMed]
  15. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
    [Crossref]
  16. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17, 14634–14648(2009)
    [Crossref] [PubMed]
  17. D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [Crossref] [PubMed]
  18. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nature Photon. 1, 106–114(2007).
    [Crossref]
  19. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  20. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [Crossref]

2009 (6)

2008 (4)

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
[Crossref]

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

2007 (3)

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[Crossref]

S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nature Photon. 1, 106–114(2007).
[Crossref]

2006 (3)

2004 (1)

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

2002 (1)

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

2001 (2)

Baba, T.

Benisty, H.

Bhat, N. A. R.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E. 64, 056604 (2001).
[Crossref]

Borel, P. I.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Dai, L.

De La Rue, R. M.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nature Photon. 1, 106–114(2007).
[Crossref]

Ebnali-Heidari, M.

Eggleton, B. J.

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nature Photon. 1, 106–114(2007).
[Crossref]

Eich, M.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

Fan, S. H.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

Frandsen, L. H.

Gomez-Iglesias, A.

Grillet, C.

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

Hamachi, Y.

Ibanescu, M.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

Ippen, E.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

Ji, Y.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[Crossref]

Jiang, C.

L. Dai and C. Jiang, “Ultrawideband low dispersion slow light waveguides,” J. Lightwave Technol. 27, 2862–2868 (2009).
[Crossref]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[Crossref]

Joannopoulos, J. D.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Johnson, S. G.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[Crossref] [PubMed]

Khayam, O.

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

Kubo, S.

Lavrinenko, A. V.

Li, C.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[Crossref]

Li, J.

Ma, J.

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[Crossref]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

McMillan, J. E.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nature Photon. 1, 106–114(2007).
[Crossref]

Mori, D.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

Osgood, R. M.

Panoiu, N. C.

Pedersen, J. F.

Petrov, A. Yu.

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

Psaltis, D.

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Quake, S.

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Rawal, S.

Sinha, R. K.

Sipe, J. E.

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E. 64, 056604 (2001).
[Crossref]

Soljacic, M.

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

Tian, H.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[Crossref]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref] [PubMed]

Wong, C. W.

Yang, C. H.

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Yang, X. D.

Zheng, C.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[Crossref]

Appl. Phys. Lett. (1)

A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769(2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B. (1)

M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B. 19, 2052–2059 (2002).
[Crossref]

Nature (1)

D. Psaltis, S. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[Crossref] [PubMed]

Nature Photon. (3)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nature Photon. 1, 106–114(2007).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photoniccrystal waveguides,” Nature Photon. 3, 206–210 (2009).
[Crossref]

T. F. Krauss, “Why do we need slow light?,” Nature Photon. 2, 448–449 (2008).
[Crossref]

Opt. Commun. (1)

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. E. (1)

N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E. 64, 056604 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of the designed asymmetric two-dimensional photonic waveguide with a triangular lattice of backgroup index n = 3.5 and basic air hole radius R = 0.3 a . Compared with the holes in the top cladding, the hole radius and the infiltrated liquid in the bottom cladding (marked by the gray region) are increased.

Fig. 2
Fig. 2

(a) Calculated dispersion curves for the even mode corresponding to different value of n f in an asymmetrical infiltrated W1 waveguide and (b) associated group index of the waveguide.

Fig. 3
Fig. 3

(a) Dispersion relation and (b) group index n g change when we increase the radius of the one cladding at n f = 1.75 . Bold solid lines represent the flat band slow light region.

Fig. 4
Fig. 4

(a) Dispersion relation and (b) group index n g change when we increase the radius of the one cladding at n f = 1.95 . Bold solid lines represent the flat band slow light region.

Fig. 5
Fig. 5

(a) Group index n g change when we increase the refractive index at R 1 = 0.39 a . (b) Results at R 1 = 0.395 a .

Metrics