Abstract

Optical impulse-response characterization of diffusive media can be of importance in various applications, among them optical imaging in the security and medical fields. We present results of an experimental technique that we developed for acquiring the impulse response, based upon the Kramers–Kronig algorithm, and have been applied for optical imaging of objects hidden behind clothing. We demonstrate three-dimensional imaging with 5mm depth resolution between diffusive layers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith, B. G. Hoover, S. M. Grannell, K. D. Mills, H. S. Chen, and D. S. Dilworth, “Realization of time gating by use of spatial filtering,” Appl. Opt. 38, 1370–1376 (1999).
    [Crossref]
  2. A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, “Ultrafast cross-correlated harmonic imaging throughscattering media,” Appl. Opt. 40, 45–51(2001).
    [Crossref]
  3. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
    [Crossref] [PubMed]
  4. P. Naulleau, E. Leith, H. Chen, B. Hoover, and J. Lopez, “Time-gated ensemble-averaged imaging through highly scattering media,” Appl. Opt. 36, 3889–3894 (1997).
    [Crossref] [PubMed]
  5. B. B. Das, K. M. Yoo, and R. R. Alfano, “Ultrafast timegated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [Crossref] [PubMed]
  6. K. M. Yoo, B. B. Das, and R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958–960 (1992).
    [Crossref] [PubMed]
  7. E. Granot and S. Sternklar, “Reconstructing the impulse response of a diffusive medium with the Kramers-Kronig relations,” J. Opt. Soc. Am. B 24, 1620–1626 (2007).
    [Crossref]
  8. Er'el Granot, Yossi Ben-Aderet, and Shmuel Sternklar, “Differential multiply subtractive Kramers-Kronig relations,” J. Opt. Soc. Am. B 25, 609–613 (2008).
    [Crossref]
  9. Y. Ben-Aderet, E. Granot, S. Sternklar, and N. S. Kopeika, “Spectral analysis of a one-dimensional scattering medium with the differential multiply subtractive Kramers-Kronig method,” J. Opt. Soc. Am. B 26, 125–128 (2009).
    [Crossref]
  10. E. Granot and S. Sternklar, “Spectral ballistic imaging: a novel technique for viewing through turbid or obstructing media,” J. Opt. Soc. Am. A 20, 1595–1599 (2003).
    [Crossref]
  11. E. Granot, S. Sternklar, and Y. Ben-Aderet, “Efficient impulse response reconstruction from the amplitude spectrum,” J. Opt. Soc. Am. B 27, 354–357 (2010).
    [Crossref]
  12. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, 1999).

2010 (1)

2009 (1)

2008 (1)

2007 (1)

2003 (1)

2001 (1)

1999 (1)

1997 (1)

1993 (1)

1992 (2)

Alfano, R. R.

Ben-Aderet, Y.

Ben-Aderet, Yossi

Buck, J. R.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, 1999).

Chen, H.

Chen, H. S.

Das, B. B.

Dilworth, D. S.

Grannell, S. M.

Granot, E.

Granot, Er'el

Hebden, J. C.

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[Crossref] [PubMed]

Hehlen, M. P.

Hoover, B.

Hoover, B. G.

Kopeika, N. S.

Kuditcher, A.

Leith, E.

Leith, E. N.

Lopez, J.

Mills, K. D.

Naulleau, P.

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, 1999).

Rand, S. C.

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, 1999).

Shih, M. P.

Sternklar, S.

Sternklar, Shmuel

Yoo, K. M.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Med. Phys. (1)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (1)

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of time-domain imaging.

Fig. 2
Fig. 2

Experimental setup and results (double peak) as seen on the oscilloscope. The horizontal axis scale is 1 ns / div .

Fig. 3
Fig. 3

Illustration of spectral techniques based on KK.

Fig. 4
Fig. 4

Experimental system.

Fig. 5
Fig. 5

Typical reconstructed impulse response for shirt alone (gray) and for shirt plus object (black).

Fig. 6
Fig. 6

(Left) Target uncovered and covered by a shirt. (Right) 8 cm × 8 cm final image of the hidden object.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φ KK ( ω ) = 1 π P ω 1 ω 2 d ω ln | H ( ω ) | ω ω ,
H KK ( ω ) = | H ( ω ) | exp [ i φ KK ( ω ) ] .
h ( n ) = h e ( n ) u ( n ) ,
u ( n ) = { 1 n = 0 , N / 2 2 n = 1 , 2 , ( N / 2 ) 1 0 ( N / 2 ) + 1 , N 1 .
h e ( n ) = 1 N k = 0 N 1 H ( k ) exp ( 2 π i k n / N ) = IFFT { H ( k ) } .
[ IFFT { ln | H ( ω k ) | } u ( n ) ] = IFFT { ln H ( ω k ) } .
H ( ω k ) = exp ( FFT [ IFFT { ln | H ( ω k ) | } u ( n ) ] ) ,
h ( t n ) = IFFT { H ( ω k ) } = IFFT { exp ( FFT [ IFFT { ln | H ( ω k ) | } u ( n ) ] ) } .

Metrics