Abstract

We report on photocurrent switching based on photoisomerization for the nondestructive readout of photochromic optical memory. The photoisomerization of a diarylethene (DAE) memory layer switched the photocurrent generated in a light-absorbing phthalocyanine layer upon irradiation of a laser light. This switching is based on the ionization potential change of the DAE molecules. Switching characteristics of the photocurrent were investigated for the laser light with a wavelength of 410nm, 630nm, or 780nm. Excellent on–off ratios of the photocurrent were achieved by irradiation at 630nm and 780nm. When the pulsed laser light with a wavelength of 780nm was repeatedly irradiated to the colored and uncolored memory devices, no change of the photocurrent signal levels was observed, even after 8×105 cycles, indicating a successful demonstration of the nondestructive readout.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394(2001).
    [CrossRef]
  2. M. Tsuji, N. Nishizawa, and Y. Kawata, “Three-dimensional two-photon bit-recording with a compact fiber laser,” IEEE Trans. Magn. 45, 2232–2235 (2009).
    [CrossRef]
  3. Y. Mitsuhashi, “Optical storage: science and technology,” Japan J. Appl. Phys. 1 37, 2079–2083 (1998).
    [CrossRef]
  4. B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
    [CrossRef]
  5. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
    [CrossRef] [PubMed]
  6. K. Ogawa and Y. Kobuke, “Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy,” Org. Biomol. Chem. 7, 2241–2246 (2009).
    [CrossRef] [PubMed]
  7. M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
    [CrossRef]
  8. J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002).
    [CrossRef]
  9. I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45, 1794–1803 (2006).
    [CrossRef] [PubMed]
  10. M. Miyamoto, M. Nakano, M. Nakabayashi, S. Miyata, and Y. Kawata, “Fabrication of multilayered photochromic memory media using pressure-sensitive adhesives,” Appl. Opt. 45, 8424–8427 (2006).
    [CrossRef] [PubMed]
  11. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
    [CrossRef]
  12. M. Irie, H. Ishida, and T. Tsujioka, “Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films readout by fluorescence,” Japan J. Appl. Phys. 1 38, 6114–6117 (1999).
    [CrossRef]
  13. M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003).
    [CrossRef]
  14. T. Shiono, T. Mihara, and Y. Kobayashi, “Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories,” Japan J. Appl. Phys. 1 46, 3873–3877 (2007).
    [CrossRef]
  15. T. Tsujioka and M. Irie, “Theoretical study on data transfer rate of near-field photochromic memory,” Japan J. Appl. Phys. 1 38, 4100–4104 (1999).
    [CrossRef]
  16. T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
    [CrossRef]
  17. T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
    [CrossRef]
  18. S. J. Lim, J. Seo, and S. Y. Park, “Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout,” J. Am. Chem. Soc. 128, 14542–14547(2006).
    [CrossRef] [PubMed]
  19. P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).
  20. S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006).
    [CrossRef]
  21. V. A. Barachevsky, “Organic frequency: selective recording media,” Proc. SPIE 3055, 2 (1997).
    [CrossRef]
  22. T. Tsujioka, M. Kume, and M. Irie, “Superlow-power readout characteristics of photochromic memory,” Japan J. Appl. Phys. 1 34, 6439–6443 (1995).
    [CrossRef]
  23. G. M. Tsivgoulis and J. M. Lehn, “Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory,” Angew. Chem. 34, 1119–1122(1995).
    [CrossRef]
  24. A. J. Myles and N. R. Branda, “1,2-Dithienylethene photochromes and non-destructive erasable memory,” Adv. Funct. Mater. 12, 167–173 (2002).
    [CrossRef]
  25. P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. 17, 1798–1803(2005).
    [CrossRef]
  26. P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
    [CrossRef]
  27. T. Tsujioka and H. Kondo, “Organic bistable molecular memory using photochromic diarylethene,” Appl. Phys. Lett. 83, 937–939 (2003).
    [CrossRef]
  28. T. Tsujioka, K. Masui, and F. Otoshi, “Photocurrent detection from photochromic diarylethene film,” Appl. Phys. Lett. 85, 3128–3130 (2004).
    [CrossRef]
  29. M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009).
    [CrossRef]
  30. T. Kwon, J. Baek, J. Do, and E. Kim, “Photovoltaic effect of a thiophene substituted diarylethene polymer film,” in International Conference on Digital Printing Technologies (Society for Imaging Science and Technology, 2007), pp. 700–703.
  31. T. Tsujioka and M. Irie, “Electrical functions of photochromic molecules,” J. Photochem. Photobiol. C Photochem. Rev. 11, 1–14 (2010).
    [CrossRef]
  32. E. Kim and H. W. Lee, “Photocurrent generation of diarylethene polymers,” Mol. Cryst. Liq. Cryst. 431, 581–586 (2005).
    [CrossRef]
  33. A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
    [CrossRef]
  34. T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
    [CrossRef]
  35. T. Tsujioka and M. Irie, “Signal-to-noise ratio of nondestructive photocurrent-detection readout in near-field photochromic memory: Theoretical study,” J. Opt. Soc. Am. B 19, 297–303 (2002).
    [CrossRef]

2010 (1)

T. Tsujioka and M. Irie, “Electrical functions of photochromic molecules,” J. Photochem. Photobiol. C Photochem. Rev. 11, 1–14 (2010).
[CrossRef]

2009 (4)

M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009).
[CrossRef]

M. Tsuji, N. Nishizawa, and Y. Kawata, “Three-dimensional two-photon bit-recording with a compact fiber laser,” IEEE Trans. Magn. 45, 2232–2235 (2009).
[CrossRef]

K. Ogawa and Y. Kobuke, “Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy,” Org. Biomol. Chem. 7, 2241–2246 (2009).
[CrossRef] [PubMed]

P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
[CrossRef]

2007 (2)

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

T. Shiono, T. Mihara, and Y. Kobayashi, “Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories,” Japan J. Appl. Phys. 1 46, 3873–3877 (2007).
[CrossRef]

2006 (6)

S. J. Lim, J. Seo, and S. Y. Park, “Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout,” J. Am. Chem. Soc. 128, 14542–14547(2006).
[CrossRef] [PubMed]

S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006).
[CrossRef]

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
[CrossRef]

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
[CrossRef] [PubMed]

I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45, 1794–1803 (2006).
[CrossRef] [PubMed]

M. Miyamoto, M. Nakano, M. Nakabayashi, S. Miyata, and Y. Kawata, “Fabrication of multilayered photochromic memory media using pressure-sensitive adhesives,” Appl. Opt. 45, 8424–8427 (2006).
[CrossRef] [PubMed]

2005 (2)

E. Kim and H. W. Lee, “Photocurrent generation of diarylethene polymers,” Mol. Cryst. Liq. Cryst. 431, 581–586 (2005).
[CrossRef]

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. 17, 1798–1803(2005).
[CrossRef]

2004 (1)

T. Tsujioka, K. Masui, and F. Otoshi, “Photocurrent detection from photochromic diarylethene film,” Appl. Phys. Lett. 85, 3128–3130 (2004).
[CrossRef]

2003 (2)

T. Tsujioka and H. Kondo, “Organic bistable molecular memory using photochromic diarylethene,” Appl. Phys. Lett. 83, 937–939 (2003).
[CrossRef]

M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003).
[CrossRef]

2002 (3)

A. J. Myles and N. R. Branda, “1,2-Dithienylethene photochromes and non-destructive erasable memory,” Adv. Funct. Mater. 12, 167–173 (2002).
[CrossRef]

J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002).
[CrossRef]

T. Tsujioka and M. Irie, “Signal-to-noise ratio of nondestructive photocurrent-detection readout in near-field photochromic memory: Theoretical study,” J. Opt. Soc. Am. B 19, 297–303 (2002).
[CrossRef]

2001 (4)

G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387–3394(2001).
[CrossRef]

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
[CrossRef]

A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
[CrossRef]

T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
[CrossRef]

2000 (1)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

1999 (2)

M. Irie, H. Ishida, and T. Tsujioka, “Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films readout by fluorescence,” Japan J. Appl. Phys. 1 38, 6114–6117 (1999).
[CrossRef]

T. Tsujioka and M. Irie, “Theoretical study on data transfer rate of near-field photochromic memory,” Japan J. Appl. Phys. 1 38, 4100–4104 (1999).
[CrossRef]

1998 (1)

Y. Mitsuhashi, “Optical storage: science and technology,” Japan J. Appl. Phys. 1 37, 2079–2083 (1998).
[CrossRef]

1997 (2)

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
[CrossRef]

V. A. Barachevsky, “Organic frequency: selective recording media,” Proc. SPIE 3055, 2 (1997).
[CrossRef]

1995 (2)

T. Tsujioka, M. Kume, and M. Irie, “Superlow-power readout characteristics of photochromic memory,” Japan J. Appl. Phys. 1 34, 6439–6443 (1995).
[CrossRef]

G. M. Tsivgoulis and J. M. Lehn, “Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory,” Angew. Chem. 34, 1119–1122(1995).
[CrossRef]

1994 (1)

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
[CrossRef]

Akita, S.

S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006).
[CrossRef]

Andersson, P.

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. 17, 1798–1803(2005).
[CrossRef]

Baek, J.

T. Kwon, J. Baek, J. Do, and E. Kim, “Photovoltaic effect of a thiophene substituted diarylethene polymer film,” in International Conference on Digital Printing Technologies (Society for Imaging Science and Technology, 2007), pp. 700–703.

Barachevsky, V. A.

V. A. Barachevsky, “Organic frequency: selective recording media,” Proc. SPIE 3055, 2 (1997).
[CrossRef]

Bartkowiak, W.

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Berggren, M.

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. 17, 1798–1803(2005).
[CrossRef]

Birge, R. R.

J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002).
[CrossRef]

Branda, N. R.

A. J. Myles and N. R. Branda, “1,2-Dithienylethene photochromes and non-destructive erasable memory,” Adv. Funct. Mater. 12, 167–173 (2002).
[CrossRef]

Do, J.

T. Kwon, J. Baek, J. Do, and E. Kim, “Photovoltaic effect of a thiophene substituted diarylethene polymer film,” in International Conference on Digital Printing Technologies (Society for Imaging Science and Technology, 2007), pp. 700–703.

Drobizhev, M.

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
[CrossRef]

Fuyuki, T.

A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
[CrossRef]

T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
[CrossRef]

Gather, M. C.

P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
[CrossRef]

Hamada, Y.

A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
[CrossRef]

T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
[CrossRef]

Hamann, H. F.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
[CrossRef] [PubMed]

Harada, T.

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
[CrossRef]

Horikawa, Y.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
[CrossRef]

Ichimura, I.

Irie, M.

T. Tsujioka and M. Irie, “Electrical functions of photochromic molecules,” J. Photochem. Photobiol. C Photochem. Rev. 11, 1–14 (2010).
[CrossRef]

M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003).
[CrossRef]

T. Tsujioka and M. Irie, “Signal-to-noise ratio of nondestructive photocurrent-detection readout in near-field photochromic memory: Theoretical study,” J. Opt. Soc. Am. B 19, 297–303 (2002).
[CrossRef]

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

M. Irie, H. Ishida, and T. Tsujioka, “Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films readout by fluorescence,” Japan J. Appl. Phys. 1 38, 6114–6117 (1999).
[CrossRef]

T. Tsujioka and M. Irie, “Theoretical study on data transfer rate of near-field photochromic memory,” Japan J. Appl. Phys. 1 38, 4100–4104 (1999).
[CrossRef]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Superlow-power readout characteristics of photochromic memory,” Japan J. Appl. Phys. 1 34, 6439–6443 (1995).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
[CrossRef]

Ishida, H.

M. Irie, H. Ishida, and T. Tsujioka, “Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films readout by fluorescence,” Japan J. Appl. Phys. 1 38, 6114–6117 (1999).
[CrossRef]

Ishii, Y.

S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006).
[CrossRef]

Ishikawa, A.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
[CrossRef]

Kalinina, O.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
[CrossRef]

Kawai, T.

M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003).
[CrossRef]

Kawata, Y.

M. Tsuji, N. Nishizawa, and Y. Kawata, “Three-dimensional two-photon bit-recording with a compact fiber laser,” IEEE Trans. Magn. 45, 2232–2235 (2009).
[CrossRef]

M. Miyamoto, M. Nakano, M. Nakabayashi, S. Miyata, and Y. Kawata, “Fabrication of multilayered photochromic memory media using pressure-sensitive adhesives,” Appl. Opt. 45, 8424–8427 (2006).
[CrossRef] [PubMed]

Kim, E.

E. Kim and H. W. Lee, “Photocurrent generation of diarylethene polymers,” Mol. Cryst. Liq. Cryst. 431, 581–586 (2005).
[CrossRef]

T. Kwon, J. Baek, J. Do, and E. Kim, “Photovoltaic effect of a thiophene substituted diarylethene polymer film,” in International Conference on Digital Printing Technologies (Society for Imaging Science and Technology, 2007), pp. 700–703.

Kim, M. S.

M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003).
[CrossRef]

Kobayashi, Y.

T. Shiono, T. Mihara, and Y. Kobayashi, “Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories,” Japan J. Appl. Phys. 1 46, 3873–3877 (2007).
[CrossRef]

Kobuke, Y.

K. Ogawa and Y. Kobuke, “Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy,” Org. Biomol. Chem. 7, 2241–2246 (2009).
[CrossRef] [PubMed]

Kohnen, A.

P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
[CrossRef]

Kondo, H.

T. Tsujioka and H. Kondo, “Organic bistable molecular memory using photochromic diarylethene,” Appl. Phys. Lett. 83, 937–939 (2003).
[CrossRef]

Kumacheva, E.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
[CrossRef]

Kume, M.

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Superlow-power readout characteristics of photochromic memory,” Japan J. Appl. Phys. 1 34, 6439–6443 (1995).
[CrossRef]

Kuroki, K.

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
[CrossRef]

Kwon, T.

T. Kwon, J. Baek, J. Do, and E. Kim, “Photovoltaic effect of a thiophene substituted diarylethene polymer film,” in International Conference on Digital Printing Technologies (Society for Imaging Science and Technology, 2007), pp. 700–703.

Lee, H. W.

E. Kim and H. W. Lee, “Photocurrent generation of diarylethene polymers,” Mol. Cryst. Liq. Cryst. 431, 581–586 (2005).
[CrossRef]

Lehn, J. M.

G. M. Tsivgoulis and J. M. Lehn, “Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory,” Angew. Chem. 34, 1119–1122(1995).
[CrossRef]

Lim, S. J.

S. J. Lim, J. Seo, and S. Y. Park, “Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout,” J. Am. Chem. Soc. 128, 14542–14547(2006).
[CrossRef] [PubMed]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
[CrossRef]

Marcy, D. L.

J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002).
[CrossRef]

Martin, Y. C.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
[CrossRef] [PubMed]

Maruta, S.

S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006).
[CrossRef]

Masui, K.

T. Tsujioka, K. Masui, and F. Otoshi, “Photocurrent detection from photochromic diarylethene film,” Appl. Phys. Lett. 85, 3128–3130 (2004).
[CrossRef]

Meerholz, K.

P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
[CrossRef]

Mensik, M.

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Mihara, T.

T. Shiono, T. Mihara, and Y. Kobayashi, “Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories,” Japan J. Appl. Phys. 1 46, 3873–3877 (2007).
[CrossRef]

Miller, R. J. D.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
[CrossRef]

Mitsuhashi, Y.

Y. Mitsuhashi, “Optical storage: science and technology,” Japan J. Appl. Phys. 1 37, 2079–2083 (1998).
[CrossRef]

Miyamoto, M.

Miyata, S.

Myles, A. J.

A. J. Myles and N. R. Branda, “1,2-Dithienylethene photochromes and non-destructive erasable memory,” Adv. Funct. Mater. 12, 167–173 (2002).
[CrossRef]

Nakabayashi, M.

Nakano, M.

Navratil, J.

M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009).
[CrossRef]

Nespurek, S.

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Nishizawa, N.

M. Tsuji, N. Nishizawa, and Y. Kawata, “Three-dimensional two-photon bit-recording with a compact fiber laser,” IEEE Trans. Magn. 45, 2232–2235 (2009).
[CrossRef]

Noolandi, J.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
[CrossRef]

O’Boyle, M.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
[CrossRef] [PubMed]

Ogawa, K.

K. Ogawa and Y. Kobuke, “Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy,” Org. Biomol. Chem. 7, 2241–2246 (2009).
[CrossRef] [PubMed]

Osato, K.

Otoshi, F.

T. Tsujioka, K. Masui, and F. Otoshi, “Photocurrent detection from photochromic diarylethene film,” Appl. Phys. Lett. 85, 3128–3130 (2004).
[CrossRef]

Park, S. Y.

S. J. Lim, J. Seo, and S. Y. Park, “Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout,” J. Am. Chem. Soc. 128, 14542–14547(2006).
[CrossRef] [PubMed]

Psaltis, D.

Pu, A.

Rebane, A.

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
[CrossRef]

Rehmann, N.

P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
[CrossRef]

Robinson, N. D.

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. 17, 1798–1803(2005).
[CrossRef]

Rooks, M.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
[CrossRef] [PubMed]

Saito, K.

Sakata, T.

M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003).
[CrossRef]

Seo, J.

S. J. Lim, J. Seo, and S. Y. Park, “Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout,” J. Am. Chem. Soc. 128, 14542–14547(2006).
[CrossRef] [PubMed]

Shibata, K.

A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
[CrossRef]

T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
[CrossRef]

Shiono, T.

T. Shiono, T. Mihara, and Y. Kobayashi, “Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories,” Japan J. Appl. Phys. 1 46, 3873–3877 (2007).
[CrossRef]

Siwick, B. J.

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
[CrossRef]

Spahni, H.

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
[CrossRef]

Steckman, G. J.

Stuart, J. A.

J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002).
[CrossRef]

Sworakowski, J.

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Taniguchi, A.

T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
[CrossRef]

A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
[CrossRef]

Tatezono, F.

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
[CrossRef]

Toman, P.

M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009).
[CrossRef]

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Tsivgoulis, G. M.

G. M. Tsivgoulis and J. M. Lehn, “Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory,” Angew. Chem. 34, 1119–1122(1995).
[CrossRef]

Tsuji, M.

M. Tsuji, N. Nishizawa, and Y. Kawata, “Three-dimensional two-photon bit-recording with a compact fiber laser,” IEEE Trans. Magn. 45, 2232–2235 (2009).
[CrossRef]

Tsujioka, T.

T. Tsujioka and M. Irie, “Electrical functions of photochromic molecules,” J. Photochem. Photobiol. C Photochem. Rev. 11, 1–14 (2010).
[CrossRef]

T. Tsujioka, K. Masui, and F. Otoshi, “Photocurrent detection from photochromic diarylethene film,” Appl. Phys. Lett. 85, 3128–3130 (2004).
[CrossRef]

T. Tsujioka and H. Kondo, “Organic bistable molecular memory using photochromic diarylethene,” Appl. Phys. Lett. 83, 937–939 (2003).
[CrossRef]

T. Tsujioka and M. Irie, “Signal-to-noise ratio of nondestructive photocurrent-detection readout in near-field photochromic memory: Theoretical study,” J. Opt. Soc. Am. B 19, 297–303 (2002).
[CrossRef]

A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
[CrossRef]

T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
[CrossRef]

T. Tsujioka and M. Irie, “Theoretical study on data transfer rate of near-field photochromic memory,” Japan J. Appl. Phys. 1 38, 4100–4104 (1999).
[CrossRef]

M. Irie, H. Ishida, and T. Tsujioka, “Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films readout by fluorescence,” Japan J. Appl. Phys. 1 38, 6114–6117 (1999).
[CrossRef]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
[CrossRef]

T. Tsujioka, M. Kume, and M. Irie, “Superlow-power readout characteristics of photochromic memory,” Japan J. Appl. Phys. 1 34, 6439–6443 (1995).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
[CrossRef]

Vala, M.

M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009).
[CrossRef]

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Watanabe, K.

S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006).
[CrossRef]

Weiter, M.

M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009).
[CrossRef]

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Wickramasinghe, H. K.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
[CrossRef] [PubMed]

Wise, K. J.

J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002).
[CrossRef]

Wolleb, H.

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
[CrossRef]

Yamasaki, T.

Zacharias, P.

P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
[CrossRef]

Adv. Funct. Mater. (1)

A. J. Myles and N. R. Branda, “1,2-Dithienylethene photochromes and non-destructive erasable memory,” Adv. Funct. Mater. 12, 167–173 (2002).
[CrossRef]

Adv. Mater. (1)

P. Andersson, N. D. Robinson, and M. Berggren, “Switchable charge traps in polymer diodes,” Adv. Mater. 17, 1798–1803(2005).
[CrossRef]

Angew. Chem. (2)

P. Zacharias, M. C. Gather, A. Kohnen, N. Rehmann, and K. Meerholz, “Photoprogrammable organic light-emitting iodes,” Angew. Chem. 48, 4038–4041 (2009).
[CrossRef]

G. M. Tsivgoulis and J. M. Lehn, “Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory,” Angew. Chem. 34, 1119–1122(1995).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

T. Tsujioka, Y. Hamada, K. Shibata, A. Taniguchi, and T. Fuyuki, “Nondestructive readout of photochromic optical memory using photocurrent detection,” Appl. Phys. Lett. 78, 2282–2284 (2001).
[CrossRef]

T. Tsujioka and H. Kondo, “Organic bistable molecular memory using photochromic diarylethene,” Appl. Phys. Lett. 83, 937–939 (2003).
[CrossRef]

T. Tsujioka, K. Masui, and F. Otoshi, “Photocurrent detection from photochromic diarylethene film,” Appl. Phys. Lett. 85, 3128–3130 (2004).
[CrossRef]

Chem. Rev. (1)

M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

M. Weiter, J. Navratil, M. Vala, and P. Toman, “Photoinduced reversible switching of charge carrier mobility in conjugated polymers,” Eur. Phys. J. Appl. Phys. 48 (2009).
[CrossRef]

IEEE Trans. Magn. (1)

M. Tsuji, N. Nishizawa, and Y. Kawata, “Three-dimensional two-photon bit-recording with a compact fiber laser,” IEEE Trans. Magn. 45, 2232–2235 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

S. J. Lim, J. Seo, and S. Y. Park, “Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: a unique route to high-contrast memory switching and nondestructive readout,” J. Am. Chem. Soc. 128, 14542–14547(2006).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, “Polymeric nanostructured material for high-density three-dimensional optical memory storage,” J. Appl. Phys. 90, 5328–5334 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. C Photochem. Rev. (1)

T. Tsujioka and M. Irie, “Electrical functions of photochromic molecules,” J. Photochem. Photobiol. C Photochem. Rev. 11, 1–14 (2010).
[CrossRef]

Japan J. Appl. Phys. 1 (9)

T. Tsujioka, M. Kume, and M. Irie, “Superlow-power readout characteristics of photochromic memory,” Japan J. Appl. Phys. 1 34, 6439–6443 (1995).
[CrossRef]

M. Irie, H. Ishida, and T. Tsujioka, “Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films readout by fluorescence,” Japan J. Appl. Phys. 1 38, 6114–6117 (1999).
[CrossRef]

M. S. Kim, T. Sakata, T. Kawai, and M. Irie, “Amorphous photochromic films for near-field optical recording,” Japan J. Appl. Phys. 1 42, 3676–3681 (2003).
[CrossRef]

T. Shiono, T. Mihara, and Y. Kobayashi, “Design and fabrication of thin-film diarylethene recording layer and its reflective reproduction for super-multilayered optical memories,” Japan J. Appl. Phys. 1 46, 3873–3877 (2007).
[CrossRef]

T. Tsujioka and M. Irie, “Theoretical study on data transfer rate of near-field photochromic memory,” Japan J. Appl. Phys. 1 38, 4100–4104 (1999).
[CrossRef]

T. Tsujioka, M. Kume, Y. Horikawa, A. Ishikawa, and M. Irie, “Super-resolution disk with a photo chromic mask layer,” Japan J. Appl. Phys. 1 36, 526–529 (1997).
[CrossRef]

T. Tsujioka, F. Tatezono, T. Harada, K. Kuroki, and M. Irie, “Recording sensitivity and superlow-power readout of photon-mode photochromic memory,” Japan J. Appl. Phys. 1 33, 5788–5792 (1994).
[CrossRef]

Y. Mitsuhashi, “Optical storage: science and technology,” Japan J. Appl. Phys. 1 37, 2079–2083 (1998).
[CrossRef]

A. Taniguchi, T. Tsujioka, Y. Hamada, K. Shibata, and T. Fuyuki, “Carrier injection/transport characteristics of photochromic diarylethene film,” Japan J. Appl. Phys. 1 40, 7029–7030 (2001).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

E. Kim and H. W. Lee, “Photocurrent generation of diarylethene polymers,” Mol. Cryst. Liq. Cryst. 431, 581–586 (2005).
[CrossRef]

Nat. Mater. (1)

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5, 383–387 (2006).
[CrossRef] [PubMed]

Nonlinear Optics Quantum Optics (1)

P. Toman, S. Nespurek, M. Weiter, M. Vala, J. Sworakowski, W. Bartkowiak, and M. Mensik, “Photoswitching in polymers with photochromic dipolar species,” Nonlinear Optics Quantum Optics 37, 87–98 (2007).

Org. Biomol. Chem. (1)

K. Ogawa and Y. Kobuke, “Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy,” Org. Biomol. Chem. 7, 2241–2246 (2009).
[CrossRef] [PubMed]

Proc. SPIE (3)

M. Drobizhev, N. S. Makarov, A. Rebane, H. Wolleb, and H. Spahni, “Phthalocyanine molecules with extremely strong two-photon absorption for 3D rewritable optical information storage,” Proc. SPIE 6308, 630803 (2006).
[CrossRef]

S. Akita, Y. Ishii, S. Maruta, and K. Watanabe, “Control of isomerization in photochromic molecule with ultraviolet and visible laser,” Proc. SPIE 6346, 63462L (2006).
[CrossRef]

V. A. Barachevsky, “Organic frequency: selective recording media,” Proc. SPIE 3055, 2 (1997).
[CrossRef]

Synth. Met. (1)

J. A. Stuart, D. L. Marcy, K. J. Wise, and R. R. Birge, “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met. 127, 3–15 (2002).
[CrossRef]

Other (1)

T. Kwon, J. Baek, J. Do, and E. Kim, “Photovoltaic effect of a thiophene substituted diarylethene polymer film,” in International Conference on Digital Printing Technologies (Society for Imaging Science and Technology, 2007), pp. 700–703.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of the nondestructive readout using photocurrent switching. A, Absorption spectra of a photochromic memory layer and a light-absorbing layer. B, Energy band diagrams in the photocurrent readout process.

Fig. 2
Fig. 2

Memory device structure and molecular structures.

Fig. 3
Fig. 3

Absorption spectra of the DAE layer and the Pc layer.

Fig. 4
Fig. 4

Dark current characteristics of the memory device.

Fig. 5
Fig. 5

A, Photocurrent switching characteristics for the 780 nm laser light. B, Laser power dependence of the photocurrent for the 780 nm laser light. C, Photocurrent switching characteristics for the 630 nm laser light. D, Photocurrent switching characteristics for the 410 nm laser light.

Fig. 6
Fig. 6

Experimental setup for a repetition readout test with a pulsed laser light.

Fig. 7
Fig. 7

Waveforms of pulsed laser light and corresponding photocurrent.

Fig. 8
Fig. 8

Changes of photocurrent levels by a repetition readout by using a laser pulse with a wavelength of A, 410 nm , B, 630 nm , and C, 780 nm .

Metrics