Abstract

Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Tricker, Optoelectronic and Fiber Optic Technology(Newnes, 2002), pp. 23–28 .
  2. E. Udd, “Fiber optic smart structures,” Proc. IEEE 84, 60–76 (1996).
    [Crossref]
  3. M. Bimpas, A. Amditis, and N. Uzunoglu, “Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45GHz,” J. Appl. Geophys. 70, 226–236 (2010).
    [Crossref]
  4. D. S. Kupperman and T. N. Claytor, “Current practice and development efforts for leak detection in US reactor primary systems,” in Continuous Surveillance of Reactor Coolant Circuit Integrity (Organisation for Economic Co-operation and Development/Nuclear Energy Agency, 1986), pp. 157–164.
  5. A. Seibold, J. Bartonicek, and H. Kockelmann, “Operational monitoring in German nuclear power plants,” Nucl. Eng. Des. 159, 1–27 (1995).
    [Crossref]
  6. K. Aoki, “Reactor coolant pressure boundary leak detection systems in Japanese PWR plants,” Nucl. Eng. Des. 128, 35–42 (1991).
    [Crossref]
  7. A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
    [Crossref]
  8. S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A, Phys. 135, 570–579 (2007).
    [Crossref]
  9. Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
    [Crossref]
  10. J. J. Smolen and A. Van der Speck, “Distributed temperature sensing—a DTS primer for oil & gas production,” unclassified Shell report EP2003 (2003).
  11. F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).
  12. M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
    [Crossref]
  13. M. Nikles, “Long-distance fiber optic sensing solutions for pipeline leakage intrusion and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
    [Crossref]
  14. D. Inaudi, R. Belli, and R. Walder, “Detection and localization of micro-leakages using distributed fiber optic sensing,” in 7th International Pipeline Conference IPC2008 (ASME, 2008), paper IPC 2008-64280.
  15. F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Natural Gas Sci. Eng. 1, 134–143 (2009).
    [Crossref]
  16. J. Zhang, “Designing a cost effective and reliable pipeline leak detection system,” presented at the Pipeline Reliability Conference, Houston, Texas, USA, 19–22 November 1996.
  17. J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
    [Crossref]
  18. J. A. Buck, Fundamentals of Optical Fibers (Wiley Interscience, 2004), pp 103–112.
  19. C. Pandian, M. Kasinathan, S. Sosamma, C. Babu Rao, N. Murali, T. Jayakumar, and B. Raj, “One-dimensional temperature reconstruction for Raman distributed temperature sensor using path delay multiplexing,” J. Opt. Soc. Am. B 26, 2423–2426 (2009).
    [Crossref]
  20. C. E. Stroud and J. K. Tannehill, Jr., “Applying built-in self-test to majority voting fault tolerant circuits,” in 16th IEEE VLSI Test Symposium (1998), pp. 303–308.
  21. P. Swaminathan, “Design aspects of safety critical instrumentation of nuclear installations,” IJNEST 1, 254–263 (2005).
  22. M. Höbel, J. Ricka, M. Wüthrich, and Th. Binkert, “High resolution distributed temperature sensing with the multiphoton-timing technique,” Appl. Opt. 34, 2955–2967 (1995).
    [Crossref] [PubMed]
  23. P. di Vita and U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 12, 17–22 (1980).
    [Crossref]
  24. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
    [Crossref]

2010 (2)

M. Bimpas, A. Amditis, and N. Uzunoglu, “Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45GHz,” J. Appl. Geophys. 70, 226–236 (2010).
[Crossref]

Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
[Crossref]

2009 (3)

M. Nikles, “Long-distance fiber optic sensing solutions for pipeline leakage intrusion and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Natural Gas Sci. Eng. 1, 134–143 (2009).
[Crossref]

C. Pandian, M. Kasinathan, S. Sosamma, C. Babu Rao, N. Murali, T. Jayakumar, and B. Raj, “One-dimensional temperature reconstruction for Raman distributed temperature sensor using path delay multiplexing,” J. Opt. Soc. Am. B 26, 2423–2426 (2009).
[Crossref]

2007 (1)

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A, Phys. 135, 570–579 (2007).
[Crossref]

2005 (1)

P. Swaminathan, “Design aspects of safety critical instrumentation of nuclear installations,” IJNEST 1, 254–263 (2005).

2004 (1)

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

2003 (1)

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

1998 (1)

J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
[Crossref]

1996 (1)

E. Udd, “Fiber optic smart structures,” Proc. IEEE 84, 60–76 (1996).
[Crossref]

1995 (2)

A. Seibold, J. Bartonicek, and H. Kockelmann, “Operational monitoring in German nuclear power plants,” Nucl. Eng. Des. 159, 1–27 (1995).
[Crossref]

M. Höbel, J. Ricka, M. Wüthrich, and Th. Binkert, “High resolution distributed temperature sensing with the multiphoton-timing technique,” Appl. Opt. 34, 2955–2967 (1995).
[Crossref] [PubMed]

1991 (1)

K. Aoki, “Reactor coolant pressure boundary leak detection systems in Japanese PWR plants,” Nucl. Eng. Des. 128, 35–42 (1991).
[Crossref]

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[Crossref]

1980 (1)

P. di Vita and U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 12, 17–22 (1980).
[Crossref]

Amditis, A.

M. Bimpas, A. Amditis, and N. Uzunoglu, “Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45GHz,” J. Appl. Geophys. 70, 226–236 (2010).
[Crossref]

Aoki, K.

K. Aoki, “Reactor coolant pressure boundary leak detection systems in Japanese PWR plants,” Nucl. Eng. Des. 128, 35–42 (1991).
[Crossref]

Babu Rao, C.

Bals, A.

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

Bartonicek, J.

A. Seibold, J. Bartonicek, and H. Kockelmann, “Operational monitoring in German nuclear power plants,” Nucl. Eng. Des. 159, 1–27 (1995).
[Crossref]

Belli, R.

D. Inaudi, R. Belli, and R. Walder, “Detection and localization of micro-leakages using distributed fiber optic sensing,” in 7th International Pipeline Conference IPC2008 (ASME, 2008), paper IPC 2008-64280.

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[Crossref]

Bimpas, M.

M. Bimpas, A. Amditis, and N. Uzunoglu, “Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45GHz,” J. Appl. Geophys. 70, 226–236 (2010).
[Crossref]

Binkert, Th.

Briffod, F.

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers (Wiley Interscience, 2004), pp 103–112.

Bush, J.

J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
[Crossref]

Cekorich, A.

J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
[Crossref]

Chen, M.-H.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A, Phys. 135, 570–579 (2007).
[Crossref]

Claytor, T. N.

D. S. Kupperman and T. N. Claytor, “Current practice and development efforts for leak detection in US reactor primary systems,” in Continuous Surveillance of Reactor Coolant Circuit Integrity (Organisation for Economic Co-operation and Development/Nuclear Energy Agency, 1986), pp. 157–164.

Culshaw, B.

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[Crossref]

Davis, C.

J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
[Crossref]

Davis, P.

J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
[Crossref]

di Vita, P.

P. di Vita and U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 12, 17–22 (1980).
[Crossref]

Feng, H.

Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
[Crossref]

Grosswig, S.

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

Hill, D.

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Natural Gas Sci. Eng. 1, 134–143 (2009).
[Crossref]

Höbel, M.

Huang, S.-C.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A, Phys. 135, 570–579 (2007).
[Crossref]

Inaudi, D.

D. Inaudi, R. Belli, and R. Walder, “Detection and localization of micro-leakages using distributed fiber optic sensing,” in 7th International Pipeline Conference IPC2008 (ASME, 2008), paper IPC 2008-64280.

Jayakumar, T.

Jensen, F.

F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).

Jin, S.

Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
[Crossref]

Johnston, W.

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

Kakuta, T.

F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).

Kasinathan, M.

Kockelmann, H.

A. Seibold, J. Bartonicek, and H. Kockelmann, “Operational monitoring in German nuclear power plants,” Nucl. Eng. Des. 159, 1–27 (1995).
[Crossref]

Kupperman, D. S.

D. S. Kupperman and T. N. Claytor, “Current practice and development efforts for leak detection in US reactor primary systems,” in Continuous Surveillance of Reactor Coolant Circuit Integrity (Organisation for Economic Co-operation and Development/Nuclear Energy Agency, 1986), pp. 157–164.

Lin, W.-W.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A, Phys. 135, 570–579 (2007).
[Crossref]

Luebbecke, S.

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

MacLean, A.

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

Marsh, D.

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

McNair, F.

J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
[Crossref]

Moran, C.

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

Murali, N.

Nakazawa, M.

F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).

Nikles, M.

M. Nikles, “Long-distance fiber optic sensing solutions for pipeline leakage intrusion and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

Pandian, C.

Parker, P.

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

Pfeiffer, T.

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[Crossref]

Qu, Z.

Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
[Crossref]

Raj, B.

Ricka, J.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[Crossref]

Rossi, U.

P. di Vita and U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 12, 17–22 (1980).
[Crossref]

Sauser, F.

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

Seibold, A.

A. Seibold, J. Bartonicek, and H. Kockelmann, “Operational monitoring in German nuclear power plants,” Nucl. Eng. Des. 159, 1–27 (1995).
[Crossref]

Smolen, J. J.

J. J. Smolen and A. Van der Speck, “Distributed temperature sensing—a DTS primer for oil & gas production,” unclassified Shell report EP2003 (2003).

Sosamma, S.

Stroud, C. E.

C. E. Stroud and J. K. Tannehill, Jr., “Applying built-in self-test to majority voting fault tolerant circuits,” in 16th IEEE VLSI Test Symposium (1998), pp. 303–308.

Swaminathan, P.

P. Swaminathan, “Design aspects of safety critical instrumentation of nuclear installations,” IJNEST 1, 254–263 (2005).

Takada, E.

F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).

Takahashi, T.

F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).

Tanimola, F.

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Natural Gas Sci. Eng. 1, 134–143 (2009).
[Crossref]

Tannehill, J. K.

C. E. Stroud and J. K. Tannehill, Jr., “Applying built-in self-test to majority voting fault tolerant circuits,” in 16th IEEE VLSI Test Symposium (1998), pp. 303–308.

Tricker, R. L.

R. L. Tricker, Optoelectronic and Fiber Optic Technology(Newnes, 2002), pp. 23–28 .

Tsai, M.-T.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A, Phys. 135, 570–579 (2007).
[Crossref]

Udd, E.

E. Udd, “Fiber optic smart structures,” Proc. IEEE 84, 60–76 (1996).
[Crossref]

Uzunoglu, N.

M. Bimpas, A. Amditis, and N. Uzunoglu, “Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45GHz,” J. Appl. Geophys. 70, 226–236 (2010).
[Crossref]

Van der Speck, A.

J. J. Smolen and A. Van der Speck, “Distributed temperature sensing—a DTS primer for oil & gas production,” unclassified Shell report EP2003 (2003).

Vogel, B.

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

Walder, R.

D. Inaudi, R. Belli, and R. Walder, “Detection and localization of micro-leakages using distributed fiber optic sensing,” in 7th International Pipeline Conference IPC2008 (ASME, 2008), paper IPC 2008-64280.

Wüthrich, M.

Yamamoto, S.

F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).

Zeng, Z.

Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
[Crossref]

Zhang, J.

J. Zhang, “Designing a cost effective and reliable pipeline leak detection system,” presented at the Pipeline Reliability Conference, Houston, Texas, USA, 19–22 November 1996.

Zhuge, J.

Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[Crossref]

IJNEST (1)

P. Swaminathan, “Design aspects of safety critical instrumentation of nuclear installations,” IJNEST 1, 254–263 (2005).

J. Appl. Geophys. (1)

M. Bimpas, A. Amditis, and N. Uzunoglu, “Detection of water leaks in supply pipes using continuous wave sensor operating at 2.45GHz,” J. Appl. Geophys. 70, 226–236 (2010).
[Crossref]

J. Natural Gas Sci. Eng. (1)

F. Tanimola and D. Hill, “Distributed fibre optic sensors for pipeline protection,” J. Natural Gas Sci. Eng. 1, 134–143 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Measurement (1)

Z. Qu, H. Feng, Z. Zeng, J. Zhuge, and S. Jin, “A SVM-based pipeline leakage detection and pre-warning system,” Measurement 43, 513–519 (2010).
[Crossref]

Nucl. Eng. Des. (2)

A. Seibold, J. Bartonicek, and H. Kockelmann, “Operational monitoring in German nuclear power plants,” Nucl. Eng. Des. 159, 1–27 (1995).
[Crossref]

K. Aoki, “Reactor coolant pressure boundary leak detection systems in Japanese PWR plants,” Nucl. Eng. Des. 128, 35–42 (1991).
[Crossref]

Opt. Quantum Electron. (1)

P. di Vita and U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 12, 17–22 (1980).
[Crossref]

Proc. IEEE (1)

E. Udd, “Fiber optic smart structures,” Proc. IEEE 84, 60–76 (1996).
[Crossref]

Proc. SPIE (3)

M. Nikles, B. Vogel, F. Briffod, S. Grosswig, F.Sauser, S. Luebbecke, A. Bals, and T. Pfeiffer, “Leakage detection using fiber optics distributed temperature monitoring,” Proc. SPIE 5384, 18–25 (2004) .
[Crossref]

M. Nikles, “Long-distance fiber optic sensing solutions for pipeline leakage intrusion and ground movement detection,” Proc. SPIE 7316, 731602 (2009).
[Crossref]

J. Bush, C. Davis, P. Davis, A. Cekorich, and F. McNair, “Buried fiber intrusion detection sensor with minima false alarm rates, Proc. SPIE , 3489, 30–40 (1998).
[Crossref]

Sens. Actuators A, Phys. (2)

A. MacLean, C. Moran, W. Johnston, B. Culshaw, D. Marsh, and P. Parker, “Detection of hydrocarbon fuel spills using a distributed fibre optic sensor,” Sens. Actuators A, Phys. 109, 60–67 (2003).
[Crossref]

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, “Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks,” Sens. Actuators A, Phys. 135, 570–579 (2007).
[Crossref]

Other (8)

R. L. Tricker, Optoelectronic and Fiber Optic Technology(Newnes, 2002), pp. 23–28 .

D. S. Kupperman and T. N. Claytor, “Current practice and development efforts for leak detection in US reactor primary systems,” in Continuous Surveillance of Reactor Coolant Circuit Integrity (Organisation for Economic Co-operation and Development/Nuclear Energy Agency, 1986), pp. 157–164.

J. A. Buck, Fundamentals of Optical Fibers (Wiley Interscience, 2004), pp 103–112.

C. E. Stroud and J. K. Tannehill, Jr., “Applying built-in self-test to majority voting fault tolerant circuits,” in 16th IEEE VLSI Test Symposium (1998), pp. 303–308.

J. Zhang, “Designing a cost effective and reliable pipeline leak detection system,” presented at the Pipeline Reliability Conference, Houston, Texas, USA, 19–22 November 1996.

D. Inaudi, R. Belli, and R. Walder, “Detection and localization of micro-leakages using distributed fiber optic sensing,” in 7th International Pipeline Conference IPC2008 (ASME, 2008), paper IPC 2008-64280.

J. J. Smolen and A. Van der Speck, “Distributed temperature sensing—a DTS primer for oil & gas production,” unclassified Shell report EP2003 (2003).

F. Jensen, E. Takada, M. Nakazawa, T. Takahashi, T. Kakuta, and S. Yamamoto, “Development of a distributed monitoring system for temperature and coolant leakage,” in Proceedings of the IAEA OECD/NEANSC Incore 96 Meeting (Nuclear Energy Agency, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of RDTS system.

Fig. 2
Fig. 2

A, test loop to test optical-fiber-based distributed sensor for temperature sensor. B, leak setup: (a) funnel, (b) valve, (c) insulation, (d) feed tube, (e) fissure, (f) fiber.

Fig. 3
Fig. 3

(a) Fiber is laid singly. The entire fiber section A D is monitored. The leak at measurement zone L is measured by fiber section B C . (b) Fiber is laid in looped back mode. The entire fiber section A D is monitored. The leak at measurement zone L is measured by fiber section E F , in addition to section B C .

Fig. 4
Fig. 4

Solid curve indicates the averaged measured temperature over the looped back fiber. The dashed curve indicates threshold equal to 1 σ above this averaged temperature. B C and E F are the measurement zones.

Fig. 5
Fig. 5

Instance of a false alarm in a typical room temperature measurement. The solid circles represent instantaneous temperature measurements.

Fig. 6
Fig. 6

Instance of leak detection in a typical temperature measurement in a leak. The solid circles represent instantaneous temperature measurements.

Fig. 7
Fig. 7

Leak detection using the looped back fiber mode. Alarm = 1 indicates a leak.

Fig. 8
Fig. 8

Number of false alarm events registered as a function of threshold. A reduction in false alarms using the looped back mode is clearly seen.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

T meas = T + ε spatial + ε temp + ε statistical ,
T meas ( B C ) = T ( B C ) + ε spatial ( B C ) + ε temp ( B C + ε statistical ( B C ) .
T thresh = T mean + n thresh σ ,
P ( | T T mean | > n thresh σ ) = 2 π n thresh e y 2 / 2 d y = e r c f n thresh 2 ,
y = T T mean σ 2 .
P ( | T T mean | > σ ) = 0.3173.
P ( | T T mean | > 2 σ ) = 0.0455.
P ( | T T mean | > 3 σ ) = 0.0027.
T meas ( E F ) = T ( E F ) + ε spatial ( E F ) + ε temp ( E F ) + ε statistical ( E F ) ,
P ( | T T mean | > n thresh σ ) = 2 π n thresh e y 2 / 2 d y = e r c f n thresh 2 ,
y = T T mean σ 2 .
P = P ( | T T mean | > n σ ) * P ( | T T mean | > n σ ) .
P = P ( | T T mean | > σ ) * P ( | T T mean | > σ ) = 0.1007.
P = P ( | T T mean | > 2 σ ) * P ( | T T mean | > 2 σ ) = 0.0021.
P = P ( | T T mean | > 3 σ ) * P ( | T T mean | > 3 σ ) = 7.2 × 10 6 .

Metrics