Abstract

The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1.5μm. The variations in optical transmission are measured as a function of laser frequency over a 2GHz scan range as well as a function of time over several hours. The influence of these variations on spectroscopy of molecules in a HC-PBF is simulated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
    [CrossRef] [PubMed]
  2. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
    [CrossRef] [PubMed]
  3. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
    [CrossRef] [PubMed]
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004).
    [CrossRef] [PubMed]
  5. A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008).
    [CrossRef]
  6. X. Zhou, J. Hou, and J. Zhao, “New gas sensor head without gas chamber by hollow core PBF,” Proc. SPIE 6724, 672407(2007).
    [CrossRef]
  7. A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007).
    [CrossRef] [PubMed]
  8. A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
    [CrossRef]
  9. L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
    [CrossRef] [PubMed]
  10. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
    [CrossRef] [PubMed]
  11. C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690–6695 (2007).
    [CrossRef] [PubMed]
  12. J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
    [CrossRef]
  13. G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
    [CrossRef] [PubMed]
  14. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
    [CrossRef] [PubMed]
  15. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201(2005).
    [CrossRef] [PubMed]
  16. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
    [CrossRef]
  17. http://www.nktphotonics.com.
  18. R. Guenther, Modern Optics (Wiley, 1990).
  19. R. Amezcua-Correra, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16, 1142–1150 (2008).
    [CrossRef]
  20. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]
  21. J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
    [CrossRef]
  22. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [CrossRef]
  23. H. Huang and K. Lehman, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49, 1378–1387 (2010).
    [CrossRef] [PubMed]
  24. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]

2010 (1)

2009 (2)

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef] [PubMed]

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

2008 (5)

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008).
[CrossRef]

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

R. Amezcua-Correra, F. Gérôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16, 1142–1150 (2008).
[CrossRef]

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (2)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

1999 (2)

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

1993 (1)

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Amezcua-Correra, R.

Amy-Klein, A.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Balling, P.

Bhagwat, A. R.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef] [PubMed]

Birks, T. A.

Bordé, Ch. J.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Briaudeau, S.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Broaddus, D. H.

Broderick, N. G. R.

Casa, G.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Castrillo, A.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Chardonnet, C.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Conde, O. M.

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007).
[CrossRef] [PubMed]

Corwin, K. L.

Cubillas, A. M.

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007).
[CrossRef] [PubMed]

Daussy, C.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Di Serafino, D.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Djerroud, K.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Engler, H.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Faheem, M.

Fischer, M.

Gaeta, A. L.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef] [PubMed]

C. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15, 6690–6695 (2007).
[CrossRef] [PubMed]

Galzerano, G.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Gayraud, N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
[CrossRef] [PubMed]

George, A. K.

Gérôme, F.

Gianfrani, L.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Griffiths, B. C.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

Grimm, R.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Guenther, R.

R. Guenther, Modern Optics (Wiley, 1990).

Guinet, M.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Hald, J.

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

Hand, D. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
[CrossRef] [PubMed]

Hansen, T. P.

Hartwig, S.

A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008).
[CrossRef]

Henningsen, J.

J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

Hensley, C.

Herbst, J.

A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008).
[CrossRef]

Hermier, Y.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

Hou, J.

X. Zhou, J. Hou, and J. Zhao, “New gas sensor head without gas chamber by hollow core PBF,” Proc. SPIE 6724, 672407(2007).
[CrossRef]

Huang, H.

Knabe, K.

Knight, J. C.

Kornaszewski, L.

Kubina, P.

Lambrecht, A.

A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008).
[CrossRef]

Laporta, P.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Lazaro, J. M.

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007).
[CrossRef] [PubMed]

Lehman, K.

Leon-Saval, S. G.

Levine, J.

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Londero, P.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef] [PubMed]

Lopez-Higuera, J. M.

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007).
[CrossRef] [PubMed]

Ludvigsen, H.

MacPherson, W. N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, “Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator,” Opt. Express 15, 11219–11224 (2007).
[CrossRef] [PubMed]

McNaghten, E. D.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

Merlone, A.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Mucke, R.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Naweed, A.

Parkes, A. M.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

Parry, J. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

Petersen, J. C.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004).
[CrossRef] [PubMed]

Petrovich, M. N.

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007).
[CrossRef] [PubMed]

Reid, D. T.

Ritari, T.

Schaffer, C. B.

Schünemann, U.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Silva-Lopez, M.

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane detection at 1670 nm band using a hollow-core photonic bandgap fiber and a multiline algorithm,” Opt. Express 15, 17570–17576 (2007).
[CrossRef] [PubMed]

Simonsen, H. R.

Slemr, F.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Slepkov, A. D.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef] [PubMed]

Sørensen, T.

Stone, J. M.

Thapa, R.

Tuominen, J.

Venkataraman, V.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef] [PubMed]

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Weaver, O. L.

Wehr, R.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Weidemüller, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Werle, P.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Wöllenstein, J.

A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008).
[CrossRef]

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhao, J.

X. Zhou, J. Hou, and J. Zhao, “New gas sensor head without gas chamber by hollow core PBF,” Proc. SPIE 6724, 672407(2007).
[CrossRef]

Zhou, X.

X. Zhou, J. Hou, and J. Zhao, “New gas sensor head without gas chamber by hollow core PBF,” Proc. SPIE 6724, 672407(2007).
[CrossRef]

Zielonkowskic, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Electron. Lett. (1)

A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, “Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell,” Electron. Lett. 44, 403–405 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20, 075301 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (4)

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98, 213902 (2007).
[CrossRef] [PubMed]

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Proc. SPIE (2)

A. Lambrecht, S. Hartwig, J. Herbst, and J. Wöllenstein, “Hollow fibers for compact infrared gas sensors,” Proc. SPIE 6901, 69010V (2008).
[CrossRef]

X. Zhou, J. Hou, and J. Zhao, “New gas sensor head without gas chamber by hollow core PBF,” Proc. SPIE 6724, 672407(2007).
[CrossRef]

Rev. Sci. Instrum. (2)

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowskic, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243 (1999).
[CrossRef]

J. Levine, “Introduction to time and frequency metrology,” Rev. Sci. Instrum. 70, 2567–2596 (1999).
[CrossRef]

Other (2)

http://www.nktphotonics.com.

R. Guenther, Modern Optics (Wiley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. PID, feedback controller; BS, beam splitter; AOM, acousto-optic modulator.

Fig. 2
Fig. 2

Normalized transmission through the fibers as the laser frequency is scanned over 2 GHz (a) for the measurements with the smallest variation for each fiber type and (b) for the measurements with the largest variation. Note that the scalings of the vertical axes are not identical.

Fig. 3
Fig. 3

Normalized transmission Allan deviation with the smallest minimum for each fiber. The open diamond symbols represent the temperature Allan deviation corresponding to the plotted HC-PBF 5 transmission data.

Fig. 4
Fig. 4

(a) Relative errors in the retrieved absorption line area for each of the tested fibers when modeled with a Gaussian profile. The numbers listed below the measurement data are the standard deviations calculated over the 20 data points for the corresponding fiber. (b) Similar to (a), but with each modeled spectrum normalized to the measured fiber transmission 30 min later.

Tables (1)

Tables Icon

Table 1 Specified Parameters (Rows 1–5) and Measured Parameters (Rows 6–9) for Each of the Tested Fibers a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S 0 = P H + P V , S 1 = P H P V , S 2 = P + 45 P 45 , S 3 = P σ + P σ ,
V = S 1 2 + S 2 2 + S 3 2 S 0 .
σ A 2 ( s ) τ = 1 2 ( m 1 ) k = 1 m 1 [ A k + 1 ( s ) A k ( s ) ] 2 ,
A k ( s ) = 1 s i = 1 + s ( k 1 ) s k T i , k = 1 , , m .
T ( Δ ) = exp ( α π δ ν D 2 e Δ 2 / δ ν D 2 ) ,

Metrics