Abstract

Switchable waveguiding is investigated in two liquid-crystal-filled photonic crystal fibers with a solid core using the nematic liquid-crystal mixture E7 under planar and homeotropic anchoring conditions. Addressing experiments using ac voltages show polarization-dependent and -independent effects with response times down to a few ms. It is shown that the attenuation spectra of the two liquid-crystal-filled photonic crystal fibers can be changed dramatically by just varying the boundary conditions. Electromagnetic field simulations are presented, which are in good agreement with the experimental findings.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
    [CrossRef]
  2. H. Matthias, A. Lorenz, and H.-S. Kitzerow, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi. A 11, 3754–3767 (2007).
  3. S. Ertman, T. R. Wolinski, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals,” Opt. Express 17, 19298–19310 (2009).
    [CrossRef]
  4. L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
    [CrossRef] [PubMed]
  5. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16, 19375–19381 (2008).
    [CrossRef]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
    [CrossRef]
  7. A. Lorenz, R. Schuhmann, and H.-S. Kitzerow, “Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model,” Opt. Express 18, 3519–3530 (2010).
    [CrossRef] [PubMed]
  8. COMSOL 3.5a, Comsol Multiphysics, http://www.comsol.com.
  9. D. Langevin and M. A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Phys. Colloq. 36, C197 (1975).
    [CrossRef]
  10. Fiber LMA-8 and LMA-10, NKT Photonics A/S, Denmark, http://www.nktphotonics.com.
  11. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  12. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34, 1946–1948 (2009).
    [CrossRef] [PubMed]
  13. G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32, 1023–1025 (2007).
    [CrossRef] [PubMed]
  14. C. Hu and J. R. Whinnery, “Losses Of a nematic liquid-crystal optical-waveguide,” J. Opt. Soc. Am. 64, 1424–1432 (1974).
    [CrossRef]
  15. Parameters obtained by a fit to data for Heraeus Suprasil glass.
  16. G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
    [CrossRef]
  17. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [CrossRef]
  18. J. Sun, C. C. Chang, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278, 66–70 (2007).
    [CrossRef]

2010 (1)

2009 (2)

2008 (1)

2007 (4)

G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32, 1023–1025 (2007).
[CrossRef] [PubMed]

H. Matthias, A. Lorenz, and H.-S. Kitzerow, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi. A 11, 3754–3767 (2007).

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

J. Sun, C. C. Chang, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278, 66–70 (2007).
[CrossRef]

2006 (1)

2005 (2)

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

2004 (1)

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

2002 (1)

1975 (1)

D. Langevin and M. A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Phys. Colloq. 36, C197 (1975).
[CrossRef]

1974 (1)

Abbate, G.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

Abeeluck, A. K.

Alkeskjold, T. T.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

Bartelt, H.

Bjarklev, A.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

Bouchiat, M. A.

D. Langevin and M. A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Phys. Colloq. 36, C197 (1975).
[CrossRef]

Buczynski, R.

Chang, C. C.

J. Sun, C. C. Chang, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278, 66–70 (2007).
[CrossRef]

Da, N.

Dabrowski, R.

De Stefano, L.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Eggleton, B. J.

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

Ertman, S.

Giocondo, M.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

Granzow, N.

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

Headley, C.

Hu, C.

Kitzerow, H.-S.

Kobelke, J.

Langevin, D.

D. Langevin and M. A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Phys. Colloq. 36, C197 (1975).
[CrossRef]

Litchinitser, N. M.

Lorenz, A.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Luo, J.

Marino, A.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

Matthias, H.

H. Matthias, A. Lorenz, and H.-S. Kitzerow, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi. A 11, 3754–3767 (2007).

Mazzulla, A.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

Ni, N.

J. Sun, C. C. Chang, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278, 66–70 (2007).
[CrossRef]

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

Nowinowski-Kruszelnicki, E.

Peng, M.

Pysz, D.

Ren, G. B.

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

Russell, P. S. J.

Schmidt, M. A.

Schuhmann, R.

Schwuchow, A.

Scolari, L.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

L. Scolari, T. T. Alkeskjold, J. Riishede, and A. Bjarklev, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express 13, 7483–7496 (2005).
[CrossRef] [PubMed]

Shum, P.

Sun, J.

J. Sun, C. C. Chang, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278, 66–70 (2007).
[CrossRef]

Tkachenko, V.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

Tong, W. J.

Vita, F.

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

Whinnery, J. R.

Wolinski, T. R.

Wondraczek, L.

Wu, S. T.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Yu, X.

Zhang, L. R.

Appl. Phys. Lett. (1)

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 819–821(2005).
[CrossRef]

J. Appl. Phys. (1)

G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Phys. Colloq. (1)

D. Langevin and M. A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Phys. Colloq. 36, C197 (1975).
[CrossRef]

Opt. Commun. (1)

J. Sun, C. C. Chang, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278, 66–70 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Status Solidi. A (1)

H. Matthias, A. Lorenz, and H.-S. Kitzerow, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi. A 11, 3754–3767 (2007).

Other (3)

COMSOL 3.5a, Comsol Multiphysics, http://www.comsol.com.

Fiber LMA-8 and LMA-10, NKT Photonics A/S, Denmark, http://www.nktphotonics.com.

Parameters obtained by a fit to data for Heraeus Suprasil glass.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Representative fiber geometry (top), attenuation spectrum [10], and profile (SEM-image, scale bar = 10 μm ) of the index-guiding large-mode area fiber LMA-10.

Fig. 2
Fig. 2

Experimental setup for the investigation of the attenuation properties of the filled photonic crystal fibers. To provide maximum coupling efficiency, a fiber bundle is used, which has a rectangular profile at the end that is connected to the monochromator and a circular profile at the fiber-coupling end. Once a spectrum is recorded, the length of the sample fiber is cutback to measure an additional spectrum. Several of these spectra are then compared to calculate an appropriate attenuation spectrum. Alternatively, electro-optical switching experiments with an electrode assembly around the fiber can also be performed with this setup using monochromatic light.

Fig. 3
Fig. 3

Attenuation spectra of two photonic crystal fibers (LMA-8 and LMA-10), filled with liquid crystal E7.

Fig. 4
Fig. 4

Cartoon of a photonic crystal fiber assembled between two ITO-coated glass plates with contact electrodes. The fiber is surrounded by optical adhesive.

Fig. 5
Fig. 5

Fiber LMA-10 treated with glymo and filled with E7. Optical output power versus wavelength. Spectra without applied voltage (open symbols) and for a high addressing voltage ( 250 V rms 1 kHz sine, closed symbols) are shown.

Fig. 6
Fig. 6

Fiber LMA-10 treated with glymo and filled with E7. Detected optical output power versus applied ac signal ( 1 kHz sine) at different voltages. The output power was recorded by transmitting monochromatic radiation at λ 0 = 540 nm through the fiber and observing the end face by using a microscope lens, a polarizer, and a PMT detector. The switching event occurs at t = 23 ms . The indices “on” and “off” correspond to the response times when turning on and off the voltage, respectively. Turning on a voltage causes a decay of the detected intensity for x- and y-polarized light (solid and dotted line, respectively) with a time constant t on ( 200 V rms : t on = 3 ms ). The initial intensity is restored with a time constant t off ( 200 V rms : t off = 40 ms ) by turning off the addressing signal. Exclusively, the transmission of x-polarized light is partially restored with response times t on , 2 and t off , 2 ( 225 V rms : t on , 2 = 14 ms , t off , 2 = 3 ms ) by using strong signals > 150 V rms .

Fig. 7
Fig. 7

Fiber LMA-10 treated with glymo and filled with E7. Response times t on and t off versus applied voltages ( 1 kHz ac sine). The figure shows the switching times in spectral regions with polarization-independent response.

Fig. 8
Fig. 8

Fiber LMA-8 treated with glymo and filled with E7. Optical output power of x-polarized light versus wavelength and switching times versus applied voltage. Two spectra are shown in the upper diagram: one at the zero-voltage state (solid line) and one recorded when applying 350 V rms ( 1 kHz ). Like fiber LMA-10 under the same conditions, x- and y-polarized light is strongly attenuated in the investigated spectral region with a decay time t on . For strong addressing voltages, the transmission of x-polarized light is partially restored in selected transmission windows with a response time t on , 2 .

Fig. 9
Fig. 9

Fiber LMA-8 treated with lecithine and filled with E7. Optical output power versus wavelength.

Fig. 10
Fig. 10

Fiber LMA-8 treated with lecithine and filled with E7. Detected optical output power versus applied ac signal ( 1 kHz sine) at different voltages. The switching event occurs at t = 20 ms . Turning on a voltage causes a decay of the detected intensity and a rise at λ 0 = 462 nm . When the voltage is turned off, the detected intensity rises at λ 0 = 407 nm and decays at λ 0 = 462 nm .

Fig. 11
Fig. 11

Fiber LMA-8 treated with lecithine and filled with E7. Response times versus applied ac signal ( 1 kHz ). The transmission decays when turning on a voltage at λ 0 = 407 nm and rises at λ 0 = 462 nm . When the voltage is turned off, the transmission rises at λ 0 = 407 nm and decays at λ 0 = 462 nm .

Fig. 12
Fig. 12

Fiber LMA-10 treated with lecithine and filled with E7. Optical output power versus wavelength and versus time. Two spectra are shown in the upper diagram: one at the zero-voltage state (solid line) and one recorded when applying 350 V rms ( 1 kHz ). The time-dependent switching experiment is conducted at 546 nm (lower diagrams). The curves correspond to voltages of 100, 125, 150, 175, and 200 V rms , respectively.

Fig. 13
Fig. 13

Simulated attenuation spectra with systematically varying pitch p and inclusion radii R i . The square is a guide to the eye, indicating the shift of one particular spectral region with low attenuation. The square shifts to higher wavelength with rising R i .

Fig. 14
Fig. 14

Simulated and measured attenuation spectra of the LMA-8 and LMA-10 fiber treated with glymo and filled with E7 (simulated spectra at the top, respectively). The symbols are a guide to the eye, indicating the spectral positions of particular regions with low attenuation. The shifting behavior is known from the simulations. Two symbols appear in the upper spectrum, which are not present in the lower spectrum. The symbols appearing in both spectra are shifted to higher wavelength with rising R i . In conclusion, the symbols can be assigned to the measured spectra by speculating that selected transmission bands appear merged in the experiment.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a ( λ 0 ) = 10 · log ( I l d ( λ 0 ) I l ( λ 0 ) ) · d 1 .
n ( λ 0 ) = A + B · λ 0 2 + C · λ 0 4 ,
ε ˜ = ( n o 2 0 0 0 n o 2 0 0 0 n e 2 ) .
λ min = 4 R i n inclusion 2 n glass 2 m + 1 / 2 .

Metrics