Abstract

We demonstrate polarization-independent holographic gratings (PIHGs) based on azo-dye-doped polymer-dispersed liquid crystal films. The PIHGs are recorded by irradiation under an intensity-modulated interference field, generated by two linearly polarized green optical beams, and by simultaneously applying a suitable AC voltage to the sample. The photoexcited azo dyes are adsorbed onto the UV-cured polymer film with their long axes parallel to the normal of the substrate. When the applied voltage is switched off, the PIHGs are generated with periodic modulation of liquid-crystal structures with transparently homeotropic and randomly scattered alignments. Additionally, the generated PIHGs can be completely switched off by an applied voltage.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystal with polarized laser light,” Nature 351, 49-50 (1991).
    [CrossRef]
  2. S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
    [CrossRef]
  3. C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440-1442 (2000).
    [CrossRef]
  4. N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
    [CrossRef]
  5. I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257-1265 (1998).
    [CrossRef]
  6. Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-Y. Tsai, and C.-L. Lu, “Dynamic studies of holographic gratings in dye-doped liquid crystal films,” Opt. Lett. 26, 1767-1769 (2001).
    [CrossRef]
  7. Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
    [CrossRef]
  8. A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406-4410 (2003).
    [CrossRef]
  9. A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572-2574 (1999).
    [CrossRef]
  10. C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
    [CrossRef]
  11. A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34, 389-393 (2007).
    [CrossRef]
  12. C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
    [CrossRef]
  13. D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
    [CrossRef]
  14. F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
    [CrossRef]
  15. S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
    [CrossRef]
  16. F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439-R487 (1999).
    [CrossRef]
  17. D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: experiment and model,” Phys. Rev. E 73, 031701 (2006).
    [CrossRef]
  18. G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91-92 (1968).
    [CrossRef]
  19. A. Y.-G. Fuh, C.-C. Chen, C.-K. Liu, and K.-T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17, 7088-7094 (2009).
    [CrossRef]
  20. A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585-4589(2002).
    [CrossRef]
  21. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
    [CrossRef]

2009

2007

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34, 389-393 (2007).
[CrossRef]

2006

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

2004

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

2003

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406-4410 (2003).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

2002

2001

Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-Y. Tsai, and C.-L. Lu, “Dynamic studies of holographic gratings in dye-doped liquid crystal films,” Opt. Lett. 26, 1767-1769 (2001).
[CrossRef]

Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
[CrossRef]

2000

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440-1442 (2000).
[CrossRef]

1999

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
[CrossRef]

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439-R487 (1999).
[CrossRef]

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572-2574 (1999).
[CrossRef]

1998

1997

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

1995

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
[CrossRef]

1994

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

1991

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystal with polarized laser light,” Nature 351, 49-50 (1991).
[CrossRef]

1968

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91-92 (1968).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Alcalá, R.

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440-1442 (2000).
[CrossRef]

Balasubramanian, S.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Chen, C.-C.

Cheng, K.-T.

A. Y.-G. Fuh, C.-C. Chen, C.-K. Liu, and K.-T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17, 7088-7094 (2009).
[CrossRef]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34, 389-393 (2007).
[CrossRef]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406-4410 (2003).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

Fedorenko, D.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

Francescangeli, O.

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439-R487 (1999).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
[CrossRef]

Fu, T.-L.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

Fuh, A. Y.-G.

A. Y.-G. Fuh, C.-C. Chen, C.-K. Liu, and K.-T. Cheng, “Polarizer-free, electrically switchable and optically rewritable displays based on dye-doped polymer-dispersed liquid crystals,” Opt. Express 17, 7088-7094 (2009).
[CrossRef]

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34, 389-393 (2007).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406-4410 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585-4589(2002).
[CrossRef]

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572-2574 (1999).
[CrossRef]

Fuh, Andy Y.-G.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
[CrossRef]

Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, C.-Y. Tsai, and C.-L. Lu, “Dynamic studies of holographic gratings in dye-doped liquid crystal films,” Opt. Lett. 26, 1767-1769 (2001).
[CrossRef]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystal with polarized laser light,” Nature 351, 49-50 (1991).
[CrossRef]

Heilmeier, G. H.

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91-92 (1968).
[CrossRef]

Ho, Y.-H.

A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585-4589(2002).
[CrossRef]

Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
[CrossRef]

Holme, N. C. R.

Hsu, K.-C.

Huang, L.-J.

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572-2574 (1999).
[CrossRef]

Hvilsted, S.

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440-1442 (2000).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257-1265 (1998).
[CrossRef]

Khizhnyak, A.

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
[CrossRef]

Kumar, J.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
[CrossRef]

Lee, C.-R.

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34, 389-393 (2007).
[CrossRef]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406-4410 (2003).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585-4589(2002).
[CrossRef]

Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
[CrossRef]

Li, L.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
[CrossRef]

Liao, C.-C.

Liu, C.-K.

Liu, P.-M.

Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
[CrossRef]

Liu, T.-C.

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572-2574 (1999).
[CrossRef]

Lu, C.-L.

Mo, T.-S.

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Naydenova, I.

Nikolova, L.

Ouskova, E.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

Ramanujam, P. S.

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440-1442 (2000).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, and S. Hvilsted, “Diffraction from polarization holographic gratings with surface relief in side-chain azobenzene polyesters,” J. Opt. Soc. Am. B 15, 1257-1265 (1998).
[CrossRef]

Reshetnyak, V.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
[CrossRef]

Reznikov, Y.

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
[CrossRef]

Sánchez, C.

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440-1442 (2000).
[CrossRef]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystal with polarized laser light,” Nature 351, 49-50 (1991).
[CrossRef]

Simoni, F.

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439-R487 (1999).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
[CrossRef]

Slussarenko, S.

F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

Sun, S. T.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystal with polarized laser light,” Nature 351, 49-50 (1991).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystal with polarized laser light,” Nature 351, 49-50 (1991).
[CrossRef]

Todorov, T.

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Tripathy, S. K.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
[CrossRef]

Tsai, C.-Y.

Tsai, M.-S.

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572-2574 (1999).
[CrossRef]

Viswanathan, N. K.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
[CrossRef]

Voloschenko, D.

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
[CrossRef]

Zanoni, L. A.

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91-92 (1968).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye,” Appl. Phys. Lett. 74, 2572-2574 (1999).
[CrossRef]

C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu, and A. Y.-G. Fuh, “Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films,” Appl. Phys. Lett. 83, 4285-4287 (2003).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “Biphotonic holographic gratings in azobenzene polyesters: surface relief phenomena and polarization effects,” Appl. Phys. Lett. 77, 1440-1442 (2000).
[CrossRef]

S. Slussarenko, O. Francescangeli, F. Simoni, and Y. Reznikov, “High resolution polarization gratings in liquid crystals,” Appl. Phys. Lett. 71, 3613-3615 (1997).
[CrossRef]

G. H. Heilmeier and L. A. Zanoni, “Guest-Host interactions in nematic liquid crystals: A new electro-optic effect,” Appl. Phys. Lett. 13, 91-92 (1968).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter 11, R439-R487 (1999).
[CrossRef]

Jpn. J. Appl. Phys.

N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy, and J. Kumar, “A detail investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films,” Jpn. J. Appl. Phys. 38, 5928-5937 (1999).
[CrossRef]

Andy Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 40, 6868-6871 (2001).
[CrossRef]

A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys. 42, 4406-4410 (2003).
[CrossRef]

D. Voloschenko, A. Khizhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an easy-axis on nematic-polymer interface by light action to nematic bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
[CrossRef]

Liq. Cryst.

A. Y.-G. Fuh, K.-T. Cheng, and C.-R. Lee, “Biphotonic recording effect of polarization gratings based on dye-doped liquid crystal films,” Liq. Cryst. 34, 389-393 (2007).
[CrossRef]

Nature

W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystal with polarized laser light,” Nature 351, 49-50 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

D. Fedorenko, E. Ouskova, V. Reshetnyak, and Y. Reznikov, “Evolution of light-induced anchoring in dye-doped nematics: experiment and model,” Phys. Rev. E 73, 031701 (2006).
[CrossRef]

C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photo-alignment in dye-doped liquid crystal films,” Phys. Rev. E 69, 031704 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setups for (a) recording and (b) analyzing the PIHGs based on ADD-PDLC films: S C ( S R ), command (reference) surface; P (A), polarizer (analyzer). Polarizations of green pump beams, E G 1 and E G 2 , are parallel (along the y axis). A weak, unpolarized red beam, E P , is adopted to probe the formed PIHGs.

Fig. 2
Fig. 2

(a) Photograph of the grating spot (arrow) obtained using a digital camera. Generated PIHGs with spacing of about 30 μm , observed under a (b) crossed- and (c) parallel- polarizer polarized optical microscope. P and A are the transmissive axes of polarizer and analyzer, respectively.

Fig. 3
Fig. 3

Polar plot of the zeroth-order (squares) and first-order (diamonds) diffraction efficiencies as a function of the polarization angle (α) of the incident optical beams.

Fig. 4
Fig. 4

Diffraction patterns from PIHGs probed using an unpolarized He–Ne laser beam (a) without and (b) with an AC applied voltage (1 kHz) of 100 V . Annotations in figure refer to the nth-order diffraction signal of a PIHG.

Fig. 5
Fig. 5

Diffraction patterns from a UV-cured polymer relief grating probed using an unpolarized He–Ne laser beam (a) without and (b) with an AC applied voltage (1 kHz) of 100 V . Annotations in figure refer to the nth-order diffraction signal.

Fig. 6
Fig. 6

Measured diffraction efficiency of probe He–Ne laser beam with various polarizations as a function of polarization angle, β: (a)  α = 0 ° , (b)  α = 90 ° , (c)  α = + 45 ° , and (d)  α = 45 ° . The polarization angle α ( β ) is the angle between the transmission axis of the polarizer (analyzer) and the y axis.

Metrics