## Abstract

An improved processing approach based on the relation between range accuracy and slicing number is proposed to improve the range accuracy of range-gating laser radar. The sequence of time-slice images is segmented according to their optimal slicing number and processed in segments to achieve the range information of objects. Experimental results indicate that the slicing number has a significant impact on range accuracy, and the highest range accuracy can be achieved when the systems work with an optimal slicing number.

© 2010 Optical Society of America

Full Article |

PDF Article
### Equations (10)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$P(t)={P}_{r}\text{\hspace{0.17em}}\mathrm{exp}(-{\frac{(t-{t}_{0})}{2{a}^{2}}}^{2}),$$
(2)
$$r(t)=\sum _{n=1}^{M}\delta (t-{t}_{1}-nT)g(t),$$
(3)
$${s}_{n}={P}_{r}\text{\hspace{0.17em}}\mathrm{exp}[-\frac{({t}_{0}-{t}_{1}-nT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}]\mathrm{.}$$
(4)
$${r}_{0}^{\prime}=\frac{c}{2}\frac{\underset{n=1}{\overset{M}{\mathrm{\Sigma}}}({t}_{1}+nT)\left({P}_{r}\text{\hspace{0.17em}}\mathrm{exp}\right[-\frac{({t}_{0}-{t}_{1}-nT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}\left]\right)}{\underset{n=1}{\overset{M}{\mathrm{\Sigma}}}({P}_{r}\text{\hspace{0.17em}}\mathrm{exp}[-\frac{({t}_{0}-{t}_{1}-nT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}\left]\right)}\mathrm{.}$$
(5)
$$\mathrm{\Delta}r=\frac{c}{2}\frac{\underset{n=1}{\overset{M}{\mathrm{\Sigma}}}({t}_{1}+nT-{t}_{0})\left({P}_{r}\text{\hspace{0.17em}}\mathrm{exp}\right[-\frac{({t}_{0}-{t}_{1}-nT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}\left]\right)}{\underset{n=1}{\overset{M}{\mathrm{\Sigma}}}\left({P}_{r}\text{\hspace{0.17em}}\mathrm{exp}\right[-\frac{({t}_{0}-{t}_{1}-nT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}\left]\right)}\mathrm{.}$$
(6)
$$\frac{(1+n)}{2}T,$$
(7)
$${t}_{1}-{t}_{0}=\frac{2n+1}{4}T$$
(8)
$${r}_{0}^{\prime}=\frac{c}{2}\frac{\sum _{n=m-\frac{N}{2}}^{m+\frac{N}{2}}({t}_{1}+nT)\left({P}_{r}\text{\hspace{0.17em}}\mathrm{exp}\right[-\frac{({t}_{0}-{t}_{1}-nT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}\left]\right)}{\sum _{m-\frac{N}{2}}^{m+\frac{N}{2}}\left({P}_{r}\text{\hspace{0.17em}}\mathrm{exp}\right[-\frac{({t}_{0}-{t}_{1}-nT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}\left]\right)},$$
(9)
$${s}_{\mathrm{max}}={P}_{r}\text{\hspace{0.17em}}\mathrm{exp}[-\frac{({t}_{0}-{t}_{1}-mT{)}^{2}}{\frac{2{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}}]\mathrm{.}$$
(10)
$$N=\frac{2}{T}\sqrt{\frac{2{a}^{2}{b}^{2}\mathrm{ln}\mathrm{SNR}}{{a}^{2}+{b}^{2}}\mathrm{.}}$$