Abstract

The optical properties of YAG:Ce phosphor were measured by a double-integrating-sphere system and calculated by Mie theory and Monte Carlo ray tracing to provide precise optical characterizations of YAG:Ce phosphor for white light-emitting diode (LED) packaging design. Measurement results showed that the phosphor presents strong absorption for blue light, high reflection for yellow light, and an isotropic emission pattern of converted light. The conversion efficiency and quantum efficiency for the saturated phosphor are around 70% and 87%, respectively. Based on the measurement results, the absorption coefficient, scattering coefficient, and anisotropy factor of the phosphor calculated by Mie theory were compared with those calculated by ray-tracing simulation to modify Mie theory to find a reasonable method that can easily obtain the optical constants of YAG:Ce phosphor. Comparisons revealed that Mie theory can predict the variation of the optical constants of phosphor, but the absorption and scattering cross sections should be multiplied with two fitting parameters. The fitting pa rameters have been given in this study and can be obtained by testing packaged LEDs with different phosphor concentrations.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription