Abstract

Recent developments in micro-electro-mechanical systems and biotechnology have presented an emerging need for observation of dynamic targets in three-dimensional space. Unfortunately, conventional microscopes with fixed optical parameters have difficulty supplying sufficient vision information because of occlusion, small field of view, and low depth resolution. This paper introduces the design of a variable view imaging system that can supply a flexible view with a relatively large zenith angle and simple kinematics. Because of several performance factors, a multiobjective optimization process is applied to achieve an appropriate design. A prototype system is developed and used to verify the proposed design.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Probst, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, “Design of an advanced microassembly system for the automated assembly of bio-microrobots,” presented at the Fifth International Workshop on Microfactories, Besancon, France, 25-27 October 2006.
  2. X. Hui, R. Weibin, and S. Lining, “A flexible experimental system for complex microassembly under microscale force and vision-based control,” Int. J. Optomechatron. 1, 81-102(2007).
    [CrossRef]
  3. B. Potsaid, Y. Bellouard, and J. Wen, “Adaptive scanning optical microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging,” Opt. Express 13, 6504-6518 (2005).
    [CrossRef] [PubMed]
  4. C. Scott, B. Potsaid, and J. Wen, “Off-axis aberration correction for a wide field scanning telescope,” Proc. SPIE 7266, 72660Y (2008).
    [CrossRef]
  5. H. Hua and S. Liu, “Dual-sensor foveated imaging system,” Appl. Opt. 47, 317-327 (2008).
    [CrossRef] [PubMed]
  6. X. Tao, D. H. Hong, and H. S. Cho, “The design of active vision system for variable view imaging of micro objects,” Proc. SPIE 6376, 637608 (2006).
    [CrossRef]
  7. X. Tao, H. S. Cho, and F. Janabi-Sharifi, “Active optical system for variable view imaging of micro objects with emphasis on kinematic analysis,” Appl. Opt. 47, 4121-4132(2008).
    [CrossRef] [PubMed]
  8. X. Tao, D. H. Hong, and H. S. Cho, “Variable view imaging system with decoupling design,” Proc. SPIE 7266, 72661U (2008).
    [CrossRef]
  9. W. C. Warger II and C. A. DiMarzio, “Dual-wedge scanning confocal reflectance microscope,” Opt. Lett. 32, 2140-2142 (2007).
    [CrossRef] [PubMed]
  10. G. Garcia-Torales, M. Strojnik, and G. Paez, “Risley prisms to control wave-front tilt and displacement in a vectorial shearing interferometer,” Appl. Opt. 41, 1380-1384 (2002).
    [CrossRef] [PubMed]
  11. E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
    [CrossRef]
  12. X. Tao and H. Cho, “Variable view imaging system: an optomechatronic system for the observation of micro objects with variable view direction,” Int. J. Optomechatron. 3, 91-115(2009).
    [CrossRef]
  13. L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror,” Appl. Opt. 38, 6019-6026 (1999).
    [CrossRef]
  14. S. Kumar, Neural Networks: A Classroom Approach (McGraw-Hill, 2005).
  15. K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic, 1999).
  16. C. Roos, T. Terlaky, and J. Vial, Interior Point Methods for Linear Optimization (Springer, 2005).
  17. H. S. Cho, Optomechatronics: Fusion of Optical and Mechatronic Engineering (CRC, 2005).
    [CrossRef]

2009

X. Tao and H. Cho, “Variable view imaging system: an optomechatronic system for the observation of micro objects with variable view direction,” Int. J. Optomechatron. 3, 91-115(2009).
[CrossRef]

2008

C. Scott, B. Potsaid, and J. Wen, “Off-axis aberration correction for a wide field scanning telescope,” Proc. SPIE 7266, 72660Y (2008).
[CrossRef]

H. Hua and S. Liu, “Dual-sensor foveated imaging system,” Appl. Opt. 47, 317-327 (2008).
[CrossRef] [PubMed]

X. Tao, H. S. Cho, and F. Janabi-Sharifi, “Active optical system for variable view imaging of micro objects with emphasis on kinematic analysis,” Appl. Opt. 47, 4121-4132(2008).
[CrossRef] [PubMed]

X. Tao, D. H. Hong, and H. S. Cho, “Variable view imaging system with decoupling design,” Proc. SPIE 7266, 72661U (2008).
[CrossRef]

2007

W. C. Warger II and C. A. DiMarzio, “Dual-wedge scanning confocal reflectance microscope,” Opt. Lett. 32, 2140-2142 (2007).
[CrossRef] [PubMed]

X. Hui, R. Weibin, and S. Lining, “A flexible experimental system for complex microassembly under microscale force and vision-based control,” Int. J. Optomechatron. 1, 81-102(2007).
[CrossRef]

2006

X. Tao, D. H. Hong, and H. S. Cho, “The design of active vision system for variable view imaging of micro objects,” Proc. SPIE 6376, 637608 (2006).
[CrossRef]

2005

B. Potsaid, Y. Bellouard, and J. Wen, “Adaptive scanning optical microscope (ASOM): a multidisciplinary optical microscope design for large field of view and high resolution imaging,” Opt. Express 13, 6504-6518 (2005).
[CrossRef] [PubMed]

S. Kumar, Neural Networks: A Classroom Approach (McGraw-Hill, 2005).

C. Roos, T. Terlaky, and J. Vial, Interior Point Methods for Linear Optimization (Springer, 2005).

H. S. Cho, Optomechatronics: Fusion of Optical and Mechatronic Engineering (CRC, 2005).
[CrossRef]

2004

E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
[CrossRef]

2002

1999

Bartsch, D. U.

Bellouard, Y.

Cho, H.

X. Tao and H. Cho, “Variable view imaging system: an optomechatronic system for the observation of micro objects with variable view direction,” Int. J. Optomechatron. 3, 91-115(2009).
[CrossRef]

Cho, H. S.

X. Tao, H. S. Cho, and F. Janabi-Sharifi, “Active optical system for variable view imaging of micro objects with emphasis on kinematic analysis,” Appl. Opt. 47, 4121-4132(2008).
[CrossRef] [PubMed]

X. Tao, D. H. Hong, and H. S. Cho, “Variable view imaging system with decoupling design,” Proc. SPIE 7266, 72661U (2008).
[CrossRef]

X. Tao, D. H. Hong, and H. S. Cho, “The design of active vision system for variable view imaging of micro objects,” Proc. SPIE 6376, 637608 (2006).
[CrossRef]

H. S. Cho, Optomechatronics: Fusion of Optical and Mechatronic Engineering (CRC, 2005).
[CrossRef]

DiMarzio, C. A.

Dohi, T.

E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
[CrossRef]

Fainman, Y.

Freeman, W. R.

Garcia-Torales, G.

Hashizume, M.

E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
[CrossRef]

Hong, D. H.

X. Tao, D. H. Hong, and H. S. Cho, “Variable view imaging system with decoupling design,” Proc. SPIE 7266, 72661U (2008).
[CrossRef]

X. Tao, D. H. Hong, and H. S. Cho, “The design of active vision system for variable view imaging of micro objects,” Proc. SPIE 6376, 637608 (2006).
[CrossRef]

Hua, H.

Hui, X.

X. Hui, R. Weibin, and S. Lining, “A flexible experimental system for complex microassembly under microscale force and vision-based control,” Int. J. Optomechatron. 1, 81-102(2007).
[CrossRef]

Janabi-Sharifi, F.

Kobayashi, E.

E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
[CrossRef]

Konishi, K.

E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
[CrossRef]

Kratochvil, B. E.

M. Probst, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, “Design of an advanced microassembly system for the automated assembly of bio-microrobots,” presented at the Fifth International Workshop on Microfactories, Besancon, France, 25-27 October 2006.

Kumar, S.

S. Kumar, Neural Networks: A Classroom Approach (McGraw-Hill, 2005).

Lining, S.

X. Hui, R. Weibin, and S. Lining, “A flexible experimental system for complex microassembly under microscale force and vision-based control,” Int. J. Optomechatron. 1, 81-102(2007).
[CrossRef]

Liu, S.

Miettinen, K.

K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic, 1999).

Nelson, B. J.

M. Probst, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, “Design of an advanced microassembly system for the automated assembly of bio-microrobots,” presented at the Fifth International Workshop on Microfactories, Besancon, France, 25-27 October 2006.

Paez, G.

Potsaid, B.

Probst, M.

M. Probst, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, “Design of an advanced microassembly system for the automated assembly of bio-microrobots,” presented at the Fifth International Workshop on Microfactories, Besancon, France, 25-27 October 2006.

Roos, C.

C. Roos, T. Terlaky, and J. Vial, Interior Point Methods for Linear Optimization (Springer, 2005).

Sakuma, I.

E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
[CrossRef]

Scott, C.

C. Scott, B. Potsaid, and J. Wen, “Off-axis aberration correction for a wide field scanning telescope,” Proc. SPIE 7266, 72660Y (2008).
[CrossRef]

Strojnik, M.

Sun, P. C.

Tao, X.

X. Tao and H. Cho, “Variable view imaging system: an optomechatronic system for the observation of micro objects with variable view direction,” Int. J. Optomechatron. 3, 91-115(2009).
[CrossRef]

X. Tao, D. H. Hong, and H. S. Cho, “Variable view imaging system with decoupling design,” Proc. SPIE 7266, 72661U (2008).
[CrossRef]

X. Tao, H. S. Cho, and F. Janabi-Sharifi, “Active optical system for variable view imaging of micro objects with emphasis on kinematic analysis,” Appl. Opt. 47, 4121-4132(2008).
[CrossRef] [PubMed]

X. Tao, D. H. Hong, and H. S. Cho, “The design of active vision system for variable view imaging of micro objects,” Proc. SPIE 6376, 637608 (2006).
[CrossRef]

Terlaky, T.

C. Roos, T. Terlaky, and J. Vial, Interior Point Methods for Linear Optimization (Springer, 2005).

Vial, J.

C. Roos, T. Terlaky, and J. Vial, Interior Point Methods for Linear Optimization (Springer, 2005).

Vollmers, K.

M. Probst, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, “Design of an advanced microassembly system for the automated assembly of bio-microrobots,” presented at the Fifth International Workshop on Microfactories, Besancon, France, 25-27 October 2006.

Warger, W. C.

Weibin, R.

X. Hui, R. Weibin, and S. Lining, “A flexible experimental system for complex microassembly under microscale force and vision-based control,” Int. J. Optomechatron. 1, 81-102(2007).
[CrossRef]

Wen, J.

Zhu, L.

Appl. Opt.

Int. J. Optomechatron.

X. Tao and H. Cho, “Variable view imaging system: an optomechatronic system for the observation of micro objects with variable view direction,” Int. J. Optomechatron. 3, 91-115(2009).
[CrossRef]

X. Hui, R. Weibin, and S. Lining, “A flexible experimental system for complex microassembly under microscale force and vision-based control,” Int. J. Optomechatron. 1, 81-102(2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

X. Tao, D. H. Hong, and H. S. Cho, “Variable view imaging system with decoupling design,” Proc. SPIE 7266, 72661U (2008).
[CrossRef]

C. Scott, B. Potsaid, and J. Wen, “Off-axis aberration correction for a wide field scanning telescope,” Proc. SPIE 7266, 72660Y (2008).
[CrossRef]

X. Tao, D. H. Hong, and H. S. Cho, “The design of active vision system for variable view imaging of micro objects,” Proc. SPIE 6376, 637608 (2006).
[CrossRef]

Surg. Endosc.

E. Kobayashi, I. Sakuma, K. Konishi, M. Hashizume, and T. Dohi, “A robotic wide-angle view endoscope using wedge prisms,” Surg. Endosc. 18, 1396-1398 (2004).
[CrossRef]

Other

S. Kumar, Neural Networks: A Classroom Approach (McGraw-Hill, 2005).

K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic, 1999).

C. Roos, T. Terlaky, and J. Vial, Interior Point Methods for Linear Optimization (Springer, 2005).

H. S. Cho, Optomechatronics: Fusion of Optical and Mechatronic Engineering (CRC, 2005).
[CrossRef]

M. Probst, K. Vollmers, B. E. Kratochvil, and B. J. Nelson, “Design of an advanced microassembly system for the automated assembly of bio-microrobots,” presented at the Fifth International Workshop on Microfactories, Besancon, France, 25-27 October 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Concept of the variable view imaging system.

Fig. 2
Fig. 2

Layout of the proposed system.

Fig. 3
Fig. 3

Avoiding occlusion in the proposed system.

Fig. 4
Fig. 4

View area A 2 π with full azimuth angle and maximum zenith angle.

Fig. 5
Fig. 5

(a) Configuration of the wedge prisms with maximum zenith angle. (b) Relationship between the vertex angle θ v (deg) of the wedge prism and φ max (deg).

Fig. 6
Fig. 6

(a) Configuration of the system for calculation of r 2 π . (b) Relationship between r 2 π , r p , and θ v .

Fig. 7
Fig. 7

(a) Worst configuration with the maximum peak–valley. (b) Wavefront errors for different r p , θ v , and NA.

Fig. 8
Fig. 8

NA versus φ max in the optimized design.

Fig. 9
Fig. 9

Multiple views of the microgears: (a)–(c) captured images in three different azimuth angles with φ = 18.9 ° and (d)–(f)  φ = 13.8 ° .

Fig. 10
Fig. 10

Microassembly of a microelectrode and a microslot: (a) microassembly task and (b)–(f) images captured during the assembly.

Tables (2)

Tables Icon

Table 1 Optimal Design Result

Tables Icon

Table 2 Specification of the Experiment Setup

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

V = [ x w y w γ φ ] T ,
V = [ f x ( θ s x , θ s y , θ p 1 , θ p 2 ) f y ( θ s x , θ s y , θ p 1 , θ p 2 ) f φ ( θ p 1 , θ p 2 ) f γ ( θ p 1 , θ p 2 ) ] T ,
d A B = M d 0 ,
d 0 = D sin ( φ ) .
r o < D sin ( φ ) ,
φ max = f φ ( 0 , 0 ) | θ v .
φ max = F φ max ( θ v ) .
r 2 π = f x ( r p , 0 , 0 ° , 0 ° ) | θ v .
r 2 π = F r 2 π ( r p , θ v ) .
r o = 0.61 λ NA ,
NA = n sin ( θ / 2 ) ,
W PV = F W pv ( r p , θ v , NA ) .
max r p , θ v r 2 π , max θ v φ max , max NA r o , min r p , θ v , NA W pv .
max r p , θ v r 2 π , max r p , θ v φ max , max NA subject    to     W pv ( r p , θ v , NA ) < ρ ,
maximize NA , r p , θ v φ max subject to r 2 π K r , NA K NA , W pv < ρ ,

Metrics