Abstract

Transmittance spectra of four gaseous hydrocarbons were measured by using a Fourier transform infrared spectrometer. The analyzed substances are propane, n-butane, ethanol, and iso-octane (2,2,4-trimethyl-pentane). Mixtures of hydrocarbons and nitrogen were prepared and analyzed in an optical cell between 298 and 473K at pressures up to 1800kPa. Molecule specific absorption cross sections were calculated for different temperatures and pressures that are relevant for technical absorption measurements. Dependences of the spectral absorption cross sections, as well as the integrated absorption cross sections on temperature and pressure, were investigated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
    [CrossRef]
  2. A. Nishiyama, N. Kawahara, and E. Tomita, “In-situ fuel concentration measurements near spark plug by 3.392 μm infrared absorption method--application to spark ignition engine,” in 2003 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2003), paper 2003-01-1109.
  3. A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.
  4. E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
    [CrossRef]
  5. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross section of gaseous hydrocarbons at 3.39 μm,” Meas. Sci. Technol. 17, 1950-1957(2006).
    [CrossRef]
  6. D. B. Olson, W. G. Mallard, and W. C. Gardiner, “High temperature absorption of the 3.9 μm He-Ne laser line by small hydrocarbons,” Appl. Spectrosc. 32, 489-493 (1978).
    [CrossRef]
  7. T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
    [CrossRef]
  8. M. Y. Perrin and J. M. Hartmann, “High temperature absorption of the 3.39 μm He-Ne laser line by methane,” J. Quant. Spectrosc. Radiat. Transfer 42, 459-464 (1989).
    [CrossRef]
  9. D. N. Jaynes and B. H. Beam, “Hydrocarbon gas absorption by a He-Ne laser beam at a 3.39 μm wavelength,” Appl. Opt. 8, 1741-1742 (1969).
    [CrossRef] [PubMed]
  10. M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Measurements of local in-cylinder fuel concentration fluctuations in a firing SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 971644.
  11. M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Mixture preparation during cranking in a port-injected 4-valve SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 972982.
  12. M. Koenig and M. J. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” in 1998 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1998), paper 981053.
  13. T. Alger, M. J. Hall, and R. Matthews, “Effects of in-cylinder flow on fuel concentration at the spark plug, engine performance and emissions in a DISI engine,” in 2002 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2002), paper 2002-01-0831.
  14. A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” in 2007 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2007), paper 2007-01-644.
  15. A. Grosch, V. Beushausen, and O. Thiele, “Powertrain: crank angle resolved determination of fuel-concentration and air/fuel-ratio in a SI-production engine by using a modified optical spark plug,” Advanced Microsystems for Automotive Applications 2008 (Springer, 2008), pp. 105-126.
  16. L. S. Rothmann, C. P. Rinsland, A. Goldman, and S. T. Massie, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
    [CrossRef]
  17. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420 (2007).
    [CrossRef]
  18. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase database for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452-1461 (2004).
    [CrossRef] [PubMed]

2008 (1)

A. Grosch, V. Beushausen, and O. Thiele, “Powertrain: crank angle resolved determination of fuel-concentration and air/fuel-ratio in a SI-production engine by using a modified optical spark plug,” Advanced Microsystems for Automotive Applications 2008 (Springer, 2008), pp. 105-126.

2007 (2)

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” in 2007 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2007), paper 2007-01-644.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420 (2007).
[CrossRef]

2006 (1)

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross section of gaseous hydrocarbons at 3.39 μm,” Meas. Sci. Technol. 17, 1950-1957(2006).
[CrossRef]

2004 (2)

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase database for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452-1461 (2004).
[CrossRef] [PubMed]

2003 (3)

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

A. Nishiyama, N. Kawahara, and E. Tomita, “In-situ fuel concentration measurements near spark plug by 3.392 μm infrared absorption method--application to spark ignition engine,” in 2003 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2003), paper 2003-01-1109.

2002 (1)

T. Alger, M. J. Hall, and R. Matthews, “Effects of in-cylinder flow on fuel concentration at the spark plug, engine performance and emissions in a DISI engine,” in 2002 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2002), paper 2002-01-0831.

1998 (2)

L. S. Rothmann, C. P. Rinsland, A. Goldman, and S. T. Massie, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

M. Koenig and M. J. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” in 1998 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1998), paper 981053.

1997 (2)

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Measurements of local in-cylinder fuel concentration fluctuations in a firing SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 971644.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Mixture preparation during cranking in a port-injected 4-valve SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 972982.

1989 (1)

M. Y. Perrin and J. M. Hartmann, “High temperature absorption of the 3.39 μm He-Ne laser line by methane,” J. Quant. Spectrosc. Radiat. Transfer 42, 459-464 (1989).
[CrossRef]

1985 (1)

T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
[CrossRef]

1978 (1)

1969 (1)

Alger, T.

T. Alger, M. J. Hall, and R. Matthews, “Effects of in-cylinder flow on fuel concentration at the spark plug, engine performance and emissions in a DISI engine,” in 2002 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2002), paper 2002-01-0831.

Beam, B. H.

Beushausen, V.

A. Grosch, V. Beushausen, and O. Thiele, “Powertrain: crank angle resolved determination of fuel-concentration and air/fuel-ratio in a SI-production engine by using a modified optical spark plug,” Advanced Microsystems for Automotive Applications 2008 (Springer, 2008), pp. 105-126.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” in 2007 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2007), paper 2007-01-644.

Chu, P. M.

Dribble, R. W.

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Gardiner, W. C.

Goldman, A.

L. S. Rothmann, C. P. Rinsland, A. Goldman, and S. T. Massie, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Grosch, A.

A. Grosch, V. Beushausen, and O. Thiele, “Powertrain: crank angle resolved determination of fuel-concentration and air/fuel-ratio in a SI-production engine by using a modified optical spark plug,” Advanced Microsystems for Automotive Applications 2008 (Springer, 2008), pp. 105-126.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” in 2007 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2007), paper 2007-01-644.

Grzeszik, R.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” in 2007 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2007), paper 2007-01-644.

Hall, M. J.

T. Alger, M. J. Hall, and R. Matthews, “Effects of in-cylinder flow on fuel concentration at the spark plug, engine performance and emissions in a DISI engine,” in 2002 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2002), paper 2002-01-0831.

M. Koenig and M. J. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” in 1998 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1998), paper 981053.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Mixture preparation during cranking in a port-injected 4-valve SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 972982.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Measurements of local in-cylinder fuel concentration fluctuations in a firing SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 971644.

Hanson, R. K.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420 (2007).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross section of gaseous hydrocarbons at 3.39 μm,” Meas. Sci. Technol. 17, 1950-1957(2006).
[CrossRef]

Hartmann, J. M.

M. Y. Perrin and J. M. Hartmann, “High temperature absorption of the 3.39 μm He-Ne laser line by methane,” J. Quant. Spectrosc. Radiat. Transfer 42, 459-464 (1989).
[CrossRef]

Inomata, K.

T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
[CrossRef]

Ishikawa, M. F. N.

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

Isobe, A.

T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
[CrossRef]

Jaynes, D. N.

Jeffries, J. B.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420 (2007).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross section of gaseous hydrocarbons at 3.39 μm,” Meas. Sci. Technol. 17, 1950-1957(2006).
[CrossRef]

Johnson, P. A.

Johnson, T. J.

Kamei, K.

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

Kawahara, N.

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

A. Nishiyama, N. Kawahara, and E. Tomita, “In-situ fuel concentration measurements near spark plug by 3.392 μm infrared absorption method--application to spark ignition engine,” in 2003 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2003), paper 2003-01-1109.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Klingbeil, A. E.

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420 (2007).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross section of gaseous hydrocarbons at 3.39 μm,” Meas. Sci. Technol. 17, 1950-1957(2006).
[CrossRef]

Koenig, M.

M. Koenig and M. J. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” in 1998 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1998), paper 981053.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Mixture preparation during cranking in a port-injected 4-valve SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 972982.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Measurements of local in-cylinder fuel concentration fluctuations in a firing SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 971644.

Mallard, W. G.

Massie, S. T.

L. S. Rothmann, C. P. Rinsland, A. Goldman, and S. T. Massie, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Matthews, R.

T. Alger, M. J. Hall, and R. Matthews, “Effects of in-cylinder flow on fuel concentration at the spark plug, engine performance and emissions in a DISI engine,” in 2002 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2002), paper 2002-01-0831.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Measurements of local in-cylinder fuel concentration fluctuations in a firing SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 971644.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Mixture preparation during cranking in a port-injected 4-valve SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 972982.

Nagashima, K.

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

Nagaya, K.

T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
[CrossRef]

Nishiyama, A.

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

A. Nishiyama, N. Kawahara, and E. Tomita, “In-situ fuel concentration measurements near spark plug by 3.392 μm infrared absorption method--application to spark ignition engine,” in 2003 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2003), paper 2003-01-1109.

Olson, D. B.

Perrin, M. Y.

M. Y. Perrin and J. M. Hartmann, “High temperature absorption of the 3.39 μm He-Ne laser line by methane,” J. Quant. Spectrosc. Radiat. Transfer 42, 459-464 (1989).
[CrossRef]

Rhoderick, G. C.

Rinsland, C. P.

L. S. Rothmann, C. P. Rinsland, A. Goldman, and S. T. Massie, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Rothmann, L. S.

L. S. Rothmann, C. P. Rinsland, A. Goldman, and S. T. Massie, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

Sams, R. L.

Sharpe, S. W.

Shigenaga, M.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Stanglmaier, R.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Measurements of local in-cylinder fuel concentration fluctuations in a firing SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 971644.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Mixture preparation during cranking in a port-injected 4-valve SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 972982.

Thiele, O.

A. Grosch, V. Beushausen, and O. Thiele, “Powertrain: crank angle resolved determination of fuel-concentration and air/fuel-ratio in a SI-production engine by using a modified optical spark plug,” Advanced Microsystems for Automotive Applications 2008 (Springer, 2008), pp. 105-126.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” in 2007 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2007), paper 2007-01-644.

Tomita, E.

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

A. Nishiyama, N. Kawahara, and E. Tomita, “In-situ fuel concentration measurements near spark plug by 3.392 μm infrared absorption method--application to spark ignition engine,” in 2003 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2003), paper 2003-01-1109.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Tsuboi, T.

T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
[CrossRef]

Tsunoda, Y.

T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (2)

J. Quant. Spectrosc. Radiat. Transfer (3)

M. Y. Perrin and J. M. Hartmann, “High temperature absorption of the 3.39 μm He-Ne laser line by methane,” J. Quant. Spectrosc. Radiat. Transfer 42, 459-464 (1989).
[CrossRef]

L. S. Rothmann, C. P. Rinsland, A. Goldman, and S. T. Massie, “The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665-710 (1998).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tsuboi, K. Inomata, Y. Tsunoda, A. Isobe, and K. Nagaya, “Light absorption by hydrocarbon molecules at 3.392 μm of He-Ne laser,” Jpn. J. Appl. Phys. 24, 8-13 (1985).
[CrossRef]

Meas. Sci. Technol. (3)

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dribble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and pressure-dependent absorption cross section of gaseous hydrocarbons at 3.39 μm,” Meas. Sci. Technol. 17, 1950-1957(2006).
[CrossRef]

Other (8)

A. Nishiyama, N. Kawahara, and E. Tomita, “In-situ fuel concentration measurements near spark plug by 3.392 μm infrared absorption method--application to spark ignition engine,” in 2003 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2003), paper 2003-01-1109.

A. Nishiyama, N. Kawahara, E. Tomita, M. F. N. Ishikawa, K. Kamei, and K. Nagashima, “In-situ fuel concentration measurement near spark plug by 3.392 μm infrared absorption method--application to a port injected lean-burn engine,” in 2004 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2004), paper 2004-01-1353.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Measurements of local in-cylinder fuel concentration fluctuations in a firing SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 971644.

M. Koenig, R. Stanglmaier, M. J. Hall, and R. Matthews, “Mixture preparation during cranking in a port-injected 4-valve SI engine,” in 1997 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1997), paper 972982.

M. Koenig and M. J. Hall, “Cycle-resolved measurements of pre-combustion fuel concentration near the spark plug in a gasoline SI engine,” in 1998 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 1998), paper 981053.

T. Alger, M. J. Hall, and R. Matthews, “Effects of in-cylinder flow on fuel concentration at the spark plug, engine performance and emissions in a DISI engine,” in 2002 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2002), paper 2002-01-0831.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” in 2007 SAE World Congress, SAE Technical Paper Series (Society of Automotive Engineers, 2007), paper 2007-01-644.

A. Grosch, V. Beushausen, and O. Thiele, “Powertrain: crank angle resolved determination of fuel-concentration and air/fuel-ratio in a SI-production engine by using a modified optical spark plug,” Advanced Microsystems for Automotive Applications 2008 (Springer, 2008), pp. 105-126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup with FTIR spectrometer and mixture preparation.

Fig. 2
Fig. 2

Transmission spectra and absorption cross section of propane measured at T = 298 K .

Fig. 3
Fig. 3

Integrated absorption cross section of (a) propane and (b) n-butane.

Fig. 4
Fig. 4

Integrated absorption cross section of (a) ethanol and (b) 2,2,4-trimethyl-pentane (iso-octane).

Fig. 5
Fig. 5

Spectral absorption cross sections of propane for different pressures ranges at temperatures of (a)  T = 298 K and (b)  T = 473 K .

Fig. 6
Fig. 6

Spectral absorption cross section of (a) propane and (b) n-butane.

Fig. 7
Fig. 7

Spectral absorption cross section of (a) ethanol and (b) 2,2,4-trimethyl-pentane (iso-octane).

Tables (2)

Tables Icon

Table 1 Averaged Integrated Absorption Cross Sections and Uncertainties

Tables Icon

Table 2 Uncertainties of the Spectral Absorption Cross Sections

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( I I 0 ) ν = exp ( σ ν , T , p · ρ · L ) .
BandWidth σ ν , T , p = const.

Metrics