Abstract

The main factor that limits the quality of an image reconstructed by the process of spatial filtering in digital holographic microscopy is discussed. A spatial filter determined by the distribution of the spectrum of the virtual image is designed automatically for real time dynamic analysis of a micro-object, and an optimal reconstructed phase image can be obtained. An experiment of a holographic image with an onion specimen is presented to prove the validity of this approach. Comparing the numerical reconstruction of the hologram by employing different spatial filters with the automatic spatial filtering shows the superiority of the automatic spatial filtering method, and it is suitable for dynamic and automatic analysis.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. P. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  2. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231-7242 (2007).
    [CrossRef] [PubMed]
  3. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776-11781 (2008).
    [CrossRef] [PubMed]
  4. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).
    [CrossRef] [PubMed]
  5. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176-D182 (2008).
    [CrossRef] [PubMed]
  6. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  7. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef] [PubMed]
  8. M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A Pure Appl. Opt. 8, S518-S523(2006).
    [CrossRef]
  9. T. Colomb, J. Kühn, F. Charrière, and C. Depeursinge, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
    [CrossRef] [PubMed]
  10. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  11. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367-377 (2004).
    [CrossRef]
  12. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544 (2004).
    [CrossRef]
  13. J. Weng, J. Zhong, and C. Hu, “Digital reconstruction of Fresnel hologram with a ridge of Gabor wavelet transform,” Acta Opt. Sinica 29, 2109-2114 (2009).
    [CrossRef]

2009 (1)

J. Weng, J. Zhong, and C. Hu, “Digital reconstruction of Fresnel hologram with a ridge of Gabor wavelet transform,” Acta Opt. Sinica 29, 2109-2114 (2009).
[CrossRef]

2008 (3)

2007 (1)

2006 (2)

2005 (2)

2004 (2)

2002 (1)

U. Schnars and W. P. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

1999 (1)

Blu, T.

Carl, D.

Charrière, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

Dirksen, D.

Emery, Y.

Hu, C.

J. Weng, J. Zhong, and C. Hu, “Digital reconstruction of Fresnel hologram with a ridge of Gabor wavelet transform,” Acta Opt. Sinica 29, 2109-2114 (2009).
[CrossRef]

Ito, T.

Jueptner, W. P.

U. Schnars and W. P. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Kemper, B.

Kim, M.

Kim, M. K.

Kühn, J.

Langehanenberg, P.

Liebling, M.

Lo, C.-M.

Mann, C.

Mann, C. J.

M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A Pure Appl. Opt. 8, S518-S523(2006).
[CrossRef]

Marquet, P.

Miura, J.

Montfort, F.

Sato, Y.

Schnars, U.

U. Schnars and W. P. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Shimobaba, T.

Takenouchi, M.

Unser, M.

von Bally, G.

Weng, J.

J. Weng, J. Zhong, and C. Hu, “Digital reconstruction of Fresnel hologram with a ridge of Gabor wavelet transform,” Acta Opt. Sinica 29, 2109-2114 (2009).
[CrossRef]

Wernicke, G.

Yu, L.

Zhong, J.

J. Weng, J. Zhong, and C. Hu, “Digital reconstruction of Fresnel hologram with a ridge of Gabor wavelet transform,” Acta Opt. Sinica 29, 2109-2114 (2009).
[CrossRef]

Acta Opt. Sinica (1)

J. Weng, J. Zhong, and C. Hu, “Digital reconstruction of Fresnel hologram with a ridge of Gabor wavelet transform,” Acta Opt. Sinica 29, 2109-2114 (2009).
[CrossRef]

Appl. Opt. (4)

J. Opt. A Pure Appl. Opt. (1)

M. K. Kim, L. Yu, and C. J. Mann, “Interference techniques in digital holography,” J. Opt. A Pure Appl. Opt. 8, S518-S523(2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

U. Schnars and W. P. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Supplementary Material (1)

» Media 1: AVI (804 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Apparatus for digital holography experiment.

Fig. 2
Fig. 2

Hologram: (a) hologram with an onion specimen; (b) spectrum of the hologram on the logarithmic coordinates, where the black box represents the square spatial filter of size 60 pixels, the black circle represents the circular spatial filter of diameter 60 pixels, and the white line window represents the manual spatial filter.

Fig. 3
Fig. 3

Reconstructed wave employed the square spatial filter of size 60 pixels. (a) Amplitude, (b) wrapped phase, and (c) unwrapped phase of the reconstructed wave.

Fig. 4
Fig. 4

Reconstructed wave employed the circular spatial filter of diameter 60 pixels. (a) Amplitude, (b) wrapped phase, and (c) unwrapped phase of the reconstructed wave.

Fig. 5
Fig. 5

Reconstructed wave employed the manual spatial filter. (a) Amplitude, (b) wrapped phase, and (c) unwrapped phase of the reconstructed wave.

Fig. 6
Fig. 6

Process of the automatic spatial filtering. (a) Spectrum with the zero spectrum omitted; (b) spectrum of the virtual image; (c) histogram of (b), with the distribution area of the spectrum of the virtual image after applying (d) threshold filtering and (e) averaging filtering; (f) spectrum of the hologram on the logarithmic coordinates with the black line window representing the automatic spatial filter.

Fig. 7
Fig. 7

Reconstructed wave employed the automatic spatial filter. (a) Amplitude, (b) wrapped phase, and (c) unwrapped phase of the reconstructed wave.

Fig. 8
Fig. 8

Hologram: (a) one of the recorded holograms with a grub, (b) spectrum of the hologram on the logarithmic coordinates.

Fig. 9
Fig. 9

Unwrapped phase of the reconstructed wave.

Fig. 10
Fig. 10

Phase reconstruction of a grub by the automatic spatial filtering method, associated with Media 1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

O ( x , y ) = o ( x , y ) · exp [ j ϕ ( x , y ) ] ,
R ( x , y ) = R 0 · exp [ j 2 π λ ( x cos α + y cos β ) ] ,
I ( x , y ) = R · R * + O · O * + O · R * + O * · R = | R 0 | 2 + | o ( x , y ) | 2 + o ( x , y ) R 0 exp { j [ 2 π λ ( x cos α + y cos β ) + ϕ ( x , y ) ] } + o ( x , y ) R 0 exp { j [ 2 π λ ( x cos α + y cos β ) + ϕ ( x , y ) ] } .
A ( ξ , η ; 0 ) = I { R · R * + O · O * + O · R * + O * · R } = A 1 ( ξ , η ; 0 ) + A 2 ( ξ , η ; 0 ) + A 3 ( ξ , η ; 0 ) + A 4 ( ξ , η ; 0 ) .
A 3 ( ξ , η ; z ) = A 3 ( ξ , η ; 0 ) · exp [ j 2 π z λ 1 ( λ ξ ) 2 ( λ η ) 2 ] .
U ( x , y ; z ) = I 1 { A 3 ( ξ , η ; z ) } ,
S thr ( ξ , η ) = { 1 where     S rect ( ξ , η ) ( thr / 256 ) 0 where     S rect ( ξ , η ) < ( thr / 256 ) .

Metrics