Abstract

The absorption and scattering properties of three developmental stages of protozoan parasite Plasmodium falciparum were studied both experimentally and theoretically. Experimentally, the light attenuation and forward scattering from parasites extracted from host erythrocyte cultures were measured with UV–visible spectroscopy. The measured spectra were interpreted theoretically with a model based on the core-shell Mie theory in terms of the structural and compositional characteristics of the protozoa. The model accurately reproduced the features of the measured spectra of all developmental stages. The results show that realistic quantitative estimates of the parasite size, nucleotide, and hemozoin contents can be derived from the UV–visible spectroscopy measurements.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Pyle, A. Brunsting, and P. Latimer, “Detection of the vacuole of yeast cells in suspension by transmittance radiometry,” Appl. Opt. 18, 3615-3619 (1979).
    [CrossRef]
  2. M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
    [CrossRef]
  3. K. R. Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem. Photobiol. Sci. 3, 132-137 (2004).
    [CrossRef]
  4. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18, 585-588 (1979).
    [CrossRef]
  5. X.-T. Su, C. Capjack, C. W. Rozmus, and C. Backho, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15, 10562-10575 (2007).
    [CrossRef]
  6. S. Johnsen and E. A. Widder, “The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering,” J. Theor. Biol. 199, 181-198 (1999).
    [CrossRef]
  7. K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
    [CrossRef]
  8. U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
    [CrossRef]
  9. A. Garcia-Lopez, Y. Serebrennikova, and L. H. Garcia-Rubio, Claro Scientific LLC, 10100 Dr. Martin Luther King Jr. St. N., St. Petersburg, Fla. 33716, USA, are preparing a manuscript to be called “An interpretation model for the multiwavelength transmission spectra of red blood cells.”
  10. C. E. Alupoaei and L. H. García Rubio, “An interpretation model for the Uv-vis spectra of microorganisms,” Chem. Eng. Commun. 192, 198-218 (2005).
    [CrossRef]
  11. C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Growth behavior of microorganisms using UV-Vis spectroscopy: E. coli,” Biotechnol. Bioeng. 86, 163-167 (2004).
    [CrossRef]
  12. C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893-903 (2004).
    [CrossRef]
  13. T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
    [CrossRef]
  14. D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931-2935 (1990).
    [CrossRef]
  15. S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
    [CrossRef]
  16. W. Trager and J. B. Jenson, “Cultivation of malarial parasites,” Nature 273, 621-622 (1978).
    [CrossRef]
  17. W. Trager, S. G. Lahgreth, E. G. Platzer, “Viability and fine structure of extracellular Plasmodium lophurae prepared by different methods,” Proc. Helm. Soc. Wash. 39, 220-230(1972).
  18. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Pergamon, 1969).
  19. R. Bhandari, “Scattering coefficients for a multilayered sphere: analytic expressions and algorithms,” Appl. Opt. 24, 1960-1967 (1985).
    [CrossRef]
  20. O. B. Toon and T. P. Ackerman, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt. 20, 3657-3660(1981).
    [CrossRef]
  21. M. B. Huglin, “Specific refractive index increments,” in Light Scattering from Polymer Solutions, M. B. Huglin, ed. (Academic, 1972), Chap. 6.
  22. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 mm,” Appl. Opt. 36, 2818-2823 (1997).
    [CrossRef]
  23. Broad Institute, Plasmodium falciparum database, Genome statistics, http://www.broadinstitute.org/annotation/genome/plasmodium_falciparum_spp/GenomeStats.html.
  24. I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength temperature, and density,” J. Phys. Chem. Ref. Data 14, 933-946(1985).
  25. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633-1638 (1991).
  26. C. A. Emeis, L. J. Oosterhoff, and G. de Vries, “Numerical evaluation of Kramers-Kronig relations,” Proc. R. Soc. London Ser. A 297, 54-65 (1967).
    [CrossRef]
  27. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308-313 (1965).
  28. M. J. Box, “A comparison of several current optimization methods, and the use of transformations in constrained problems,” Comput. J. 9, 67-77 (1966).
  29. S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
    [CrossRef]
  30. J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
    [CrossRef]
  31. L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
    [CrossRef]
  32. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
    [CrossRef]
  33. S. Glushakova, D. Yin, N. Gartner, and J. Zimmerberg, “Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media,” Malaria J. 6, 61 (2007).
    [CrossRef]
  34. L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).
  35. S. E. Francis, D. J. Sullivan, and D. E. Goldberg, “Hemoglobin metabolism in the malaria parasite Plasmodium falciparum,” Annu. Rev. Microbiol. 51, 97-123 (1997).
    [CrossRef]

2008 (2)

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

2007 (4)

S. Glushakova, D. Yin, N. Gartner, and J. Zimmerberg, “Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media,” Malaria J. 6, 61 (2007).
[CrossRef]

X.-T. Su, C. Capjack, C. W. Rozmus, and C. Backho, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15, 10562-10575 (2007).
[CrossRef]

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
[CrossRef]

2006 (2)

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

2005 (1)

C. E. Alupoaei and L. H. García Rubio, “An interpretation model for the Uv-vis spectra of microorganisms,” Chem. Eng. Commun. 192, 198-218 (2005).
[CrossRef]

2004 (3)

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Growth behavior of microorganisms using UV-Vis spectroscopy: E. coli,” Biotechnol. Bioeng. 86, 163-167 (2004).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893-903 (2004).
[CrossRef]

K. R. Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem. Photobiol. Sci. 3, 132-137 (2004).
[CrossRef]

2002 (2)

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

2000 (2)

L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
[CrossRef]

S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
[CrossRef]

1999 (1)

S. Johnsen and E. A. Widder, “The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering,” J. Theor. Biol. 199, 181-198 (1999).
[CrossRef]

1997 (2)

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 mm,” Appl. Opt. 36, 2818-2823 (1997).
[CrossRef]

S. E. Francis, D. J. Sullivan, and D. E. Goldberg, “Hemoglobin metabolism in the malaria parasite Plasmodium falciparum,” Annu. Rev. Microbiol. 51, 97-123 (1997).
[CrossRef]

1991 (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633-1638 (1991).

1990 (1)

D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931-2935 (1990).
[CrossRef]

1985 (2)

R. Bhandari, “Scattering coefficients for a multilayered sphere: analytic expressions and algorithms,” Appl. Opt. 24, 1960-1967 (1985).
[CrossRef]

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength temperature, and density,” J. Phys. Chem. Ref. Data 14, 933-946(1985).

1981 (1)

1979 (2)

1978 (1)

W. Trager and J. B. Jenson, “Cultivation of malarial parasites,” Nature 273, 621-622 (1978).
[CrossRef]

1972 (2)

W. Trager, S. G. Lahgreth, E. G. Platzer, “Viability and fine structure of extracellular Plasmodium lophurae prepared by different methods,” Proc. Helm. Soc. Wash. 39, 220-230(1972).

M. B. Huglin, “Specific refractive index increments,” in Light Scattering from Polymer Solutions, M. B. Huglin, ed. (Academic, 1972), Chap. 6.

1969 (1)

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Pergamon, 1969).

1967 (1)

C. A. Emeis, L. J. Oosterhoff, and G. de Vries, “Numerical evaluation of Kramers-Kronig relations,” Proc. R. Soc. London Ser. A 297, 54-65 (1967).
[CrossRef]

1966 (1)

M. J. Box, “A comparison of several current optimization methods, and the use of transformations in constrained problems,” Comput. J. 9, 67-77 (1966).

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308-313 (1965).

Ackerman, T. P.

Alupoaei, C. E.

C. E. Alupoaei and L. H. García Rubio, “An interpretation model for the Uv-vis spectra of microorganisms,” Chem. Eng. Commun. 192, 198-218 (2005).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Growth behavior of microorganisms using UV-Vis spectroscopy: E. coli,” Biotechnol. Bioeng. 86, 163-167 (2004).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893-903 (2004).
[CrossRef]

Arakawa, E. T.

Backho, C.

Bandyopadhyay, U.

S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
[CrossRef]

Bannister, L. H.

L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
[CrossRef]

Baumann, K.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Belisle, J. M.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Bellemare, M. J.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Bercu, M.

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

Bhandari, R.

Bohle, D. S.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
[CrossRef]

Box, M. J.

M. J. Box, “A comparison of several current optimization methods, and the use of transformations in constrained problems,” Comput. J. 9, 67-77 (1966).

Brunsting, A.

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633-1638 (1991).

Capjack, C.

Cerami, A.

D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931-2935 (1990).
[CrossRef]

Chalmers, J. J.

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

Choi, W.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Choo-Smith, L.-P.

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

Choubey, V.

S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
[CrossRef]

Combrinck, J. M.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Costantino, S.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

de Vries, G.

C. A. Emeis, L. J. Oosterhoff, and G. de Vries, “Numerical evaluation of Kramers-Kronig relations,” Proc. R. Soc. London Ser. A 297, 54-65 (1967).
[CrossRef]

Deckert, V.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Diez-Silva, M.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Egan, J.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Egan, T. J.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Emeis, C. A.

C. A. Emeis, L. J. Oosterhoff, and G. de Vries, “Numerical evaluation of Kramers-Kronig relations,” Proc. R. Soc. London Ser. A 297, 54-65 (1967).
[CrossRef]

Endtz, H. Ph.

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

Feld, M. S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Fowler, R. E.

L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
[CrossRef]

Francis, S. E.

S. E. Francis, D. J. Sullivan, and D. E. Goldberg, “Hemoglobin metabolism in the malaria parasite Plasmodium falciparum,” Annu. Rev. Microbiol. 51, 97-123 (1997).
[CrossRef]

Fujioka, H.

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

García Rubio, L. H.

C. E. Alupoaei and L. H. García Rubio, “An interpretation model for the Uv-vis spectra of microorganisms,” Chem. Eng. Commun. 192, 198-218 (2005).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Growth behavior of microorganisms using UV-Vis spectroscopy: E. coli,” Biotechnol. Bioeng. 86, 163-167 (2004).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893-903 (2004).
[CrossRef]

Garcia-Lopez, A.

A. Garcia-Lopez, Y. Serebrennikova, and L. H. Garcia-Rubio, Claro Scientific LLC, 10100 Dr. Martin Luther King Jr. St. N., St. Petersburg, Fla. 33716, USA, are preparing a manuscript to be called “An interpretation model for the multiwavelength transmission spectra of red blood cells.”

Garcia-Rubio, L. H.

A. Garcia-Lopez, Y. Serebrennikova, and L. H. Garcia-Rubio, Claro Scientific LLC, 10100 Dr. Martin Luther King Jr. St. N., St. Petersburg, Fla. 33716, USA, are preparing a manuscript to be called “An interpretation model for the multiwavelength transmission spectra of red blood cells.”

Gartner, N.

S. Glushakova, D. Yin, N. Gartner, and J. Zimmerberg, “Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media,” Malaria J. 6, 61 (2007).
[CrossRef]

Gasser, R. A.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Georges, E.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Glushakova, S.

S. Glushakova, D. Yin, N. Gartner, and J. Zimmerberg, “Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media,” Malaria J. 6, 61 (2007).
[CrossRef]

Goldberg, D. E.

S. E. Francis, D. J. Sullivan, and D. E. Goldberg, “Hemoglobin metabolism in the malaria parasite Plasmodium falciparum,” Annu. Rev. Microbiol. 51, 97-123 (1997).
[CrossRef]

D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931-2935 (1990).
[CrossRef]

Grigull, U.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength temperature, and density,” J. Phys. Chem. Ref. Data 14, 933-946(1985).

Grimberg, B.

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

Guha, M.

S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
[CrossRef]

Hearne, G. R.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Henderson, G. B.

D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931-2935 (1990).
[CrossRef]

Heng, C. K.

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

Hopkins, J. M.

L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
[CrossRef]

Huglin, M. B.

M. B. Huglin, “Specific refractive index increments,” in Light Scattering from Polymer Solutions, M. B. Huglin, ed. (Academic, 1972), Chap. 6.

Jenson, J. B.

W. Trager and J. B. Jenson, “Cultivation of malarial parasites,” Nature 273, 621-622 (1978).
[CrossRef]

Johnsen, S.

S. Johnsen and E. A. Widder, “The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering,” J. Theor. Biol. 199, 181-198 (1999).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Pergamon, 1969).

Khare, B. N.

Kirschner, C.

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

Kosar, A. D.

S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
[CrossRef]

Kozitskaya, S.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Krishna, S.

L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
[CrossRef]

Kumar, S.

S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
[CrossRef]

Lahgreth, S. G.

W. Trager, S. G. Lahgreth, E. G. Platzer, “Viability and fine structure of extracellular Plasmodium lophurae prepared by different methods,” Proc. Helm. Soc. Wash. 39, 220-230(1972).

Latimer, P.

Lee, A. C.

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

Leimanis, M. L.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Lykotrafitis, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Madsen, S. K.

S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
[CrossRef]

Magil, A. J.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Maity, P.

S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
[CrossRef]

Maquelin, K.

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

Marques, H. M.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308-313 (1965).

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633-1638 (1991).

Melo, T. B.

K. R. Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem. Photobiol. Sci. 3, 132-137 (2004).
[CrossRef]

Merzlyak, M. N.

K. R. Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem. Photobiol. Sci. 3, 132-137 (2004).
[CrossRef]

Meyer, R. A.

Milham, M. E.

Miller, R. S.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Mitchell, G. H.

L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
[CrossRef]

Moore, L. R.

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

Murray, C. K.

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Naqvi, K. R.

K. R. Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem. Photobiol. Sci. 3, 132-137 (2004).
[CrossRef]

Naumann, D.

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308-313 (1965).

Neugebauer, U.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Ntenteni, S.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Olivares, J. A.

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893-903 (2004).
[CrossRef]

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Growth behavior of microorganisms using UV-Vis spectroscopy: E. coli,” Biotechnol. Bioeng. 86, 163-167 (2004).
[CrossRef]

Oosterhoff, L. J.

C. A. Emeis, L. J. Oosterhoff, and G. de Vries, “Numerical evaluation of Kramers-Kronig relations,” Proc. R. Soc. London Ser. A 297, 54-65 (1967).
[CrossRef]

Pagola, S.

S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
[CrossRef]

Park, Y. K.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Platzer, E. G.

W. Trager, S. G. Lahgreth, E. G. Platzer, “Viability and fine structure of extracellular Plasmodium lophurae prepared by different methods,” Proc. Helm. Soc. Wash. 39, 220-230(1972).

Poenar, D. P.

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

Popescu, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Popp, J.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Puppels, G. J.

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

Pyle, B. E.

Querry, M. R.

Rozmus, C. W.

Schmid, U.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Schmitt, M.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Serebrennikova, Y.

A. Garcia-Lopez, Y. Serebrennikova, and L. H. Garcia-Rubio, Claro Scientific LLC, 10100 Dr. Martin Luther King Jr. St. N., St. Petersburg, Fla. 33716, USA, are preparing a manuscript to be called “An interpretation model for the multiwavelength transmission spectra of red blood cells.”

Sewell, B. T.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Slater, A. F. G.

D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931-2935 (1990).
[CrossRef]

Smith, P. J.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Stephens, P. W.

S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
[CrossRef]

Straub, J.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength temperature, and density,” J. Phys. Chem. Ref. Data 14, 933-946(1985).

Su, X.-T.

Sullivan, D. J.

S. E. Francis, D. J. Sullivan, and D. E. Goldberg, “Hemoglobin metabolism in the malaria parasite Plasmodium falciparum,” Annu. Rev. Microbiol. 51, 97-123 (1997).
[CrossRef]

Suresh, S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Tan, S. N.

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

Taylor, D.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Thormählen, I.

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength temperature, and density,” J. Phys. Chem. Ref. Data 14, 933-946(1985).

Toon, O. B.

Trager, W.

W. Trager and J. B. Jenson, “Cultivation of malarial parasites,” Nature 273, 621-622 (1978).
[CrossRef]

W. Trager, S. G. Lahgreth, E. G. Platzer, “Viability and fine structure of extracellular Plasmodium lophurae prepared by different methods,” Proc. Helm. Soc. Wash. 39, 220-230(1972).

Tuminello, P. S.

van den Braak, N.

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

van Schalkwyk, D. A.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Walden, J. C.

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Widder, E. A.

S. Johnsen and E. A. Widder, “The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering,” J. Theor. Biol. 199, 181-198 (1999).
[CrossRef]

Williams, P. S.

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

Wrobel, J. M.

Yin, D.

S. Glushakova, D. Yin, N. Gartner, and J. Zimmerberg, “Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media,” Malaria J. 6, 61 (2007).
[CrossRef]

Zborowski, M.

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

Zhou, X.

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

Ziebuhr, W.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633-1638 (1991).

Zimmerberg, J.

S. Glushakova, D. Yin, N. Gartner, and J. Zimmerberg, “Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media,” Malaria J. 6, 61 (2007).
[CrossRef]

Zimmerman, P. A.

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

Annu. Rev. Microbiol. (1)

S. E. Francis, D. J. Sullivan, and D. E. Goldberg, “Hemoglobin metabolism in the malaria parasite Plasmodium falciparum,” Annu. Rev. Microbiol. 51, 97-123 (1997).
[CrossRef]

Appl. Opt. (5)

Biochem. J. (1)

T. J. Egan, J. M. Combrinck, J. Egan, G. R. Hearne, H. M. Marques, S. Ntenteni, B. T. Sewell, P. J. Smith, D. Taylor, D. A. van Schalkwyk, and J. C. Walden, “Fate of haem iron in the malaria parasite Plasmodium falciparum,” Biochem. J. 365, 343-347 (2002).
[CrossRef]

Biomed. Microdevices (1)

M. Bercu, X. Zhou, A. C. Lee, D. P. Poenar, C. K. Heng, and S. N. Tan, “Spectral characterization of yeast cells with an epitaxy-based UV-Vis optical sensor,” Biomed. Microdevices 8, 177-185 (2006).
[CrossRef]

Biosens. Bioelectron. (1)

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores,” Biosens. Bioelectron. 19, 893-903 (2004).
[CrossRef]

Biotechnol. Bioeng. (1)

C. E. Alupoaei, J. A. Olivares, and L. H. García Rubio, “Growth behavior of microorganisms using UV-Vis spectroscopy: E. coli,” Biotechnol. Bioeng. 86, 163-167 (2004).
[CrossRef]

Chem. Eng. Commun. (1)

C. E. Alupoaei and L. H. García Rubio, “An interpretation model for the Uv-vis spectra of microorganisms,” Chem. Eng. Commun. 192, 198-218 (2005).
[CrossRef]

Chem. Phys. Chem. (1)

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism-spectroscopic characterization of Staphylococcus epidermidis,” Chem. Phys. Chem. 8, 124-137 (2007).
[CrossRef]

Clin. Chem. (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633-1638 (1991).

Clin. Microbiol. Rev. (1)

J. M. Belisle, S. Costantino, M. L. Leimanis, M. J. Bellemare, D. S. Bohle, E. Georges, C. K. Murray, R. A. Gasser, A. J. Magil, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clin. Microbiol. Rev. 21, 97-110 (2008).
[CrossRef]

Comput. J. (2)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308-313 (1965).

M. J. Box, “A comparison of several current optimization methods, and the use of transformations in constrained problems,” Comput. J. 9, 67-77 (1966).

FASEB J. (1)

L. R. Moore, H. Fujioka, P. S. Williams, J. J. Chalmers, B. Grimberg, P. A. Zimmerman, and M. Zborowski, “Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis,” FASEB J. 20, 747-749(2006).

J. Microbiol. Methods (1)

K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H. Ph. Endtz, D. Naumann, and G. J. Puppels, “Identification of medically relevant microorganisms by vibrational spectroscopy,” J. Microbiol. Methods 51, 255-271 (2002).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

I. Thormählen, J. Straub, and U. Grigull, “Refractive index of water and its dependence on wavelength temperature, and density,” J. Phys. Chem. Ref. Data 14, 933-946(1985).

J. Theor. Biol. (1)

S. Johnsen and E. A. Widder, “The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering,” J. Theor. Biol. 199, 181-198 (1999).
[CrossRef]

Life Sci. (1)

S. Kumar, M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay, “Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanism update,” Life Sci. 80, 813-828 (2007).
[CrossRef]

Malaria J. (1)

S. Glushakova, D. Yin, N. Gartner, and J. Zimmerberg, “Quantification of malaria parasite release from infected erythrocytes: inhibition by protein-free media,” Malaria J. 6, 61 (2007).
[CrossRef]

Nature (2)

S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature 404, 307-310 (2000).
[CrossRef]

W. Trager and J. B. Jenson, “Cultivation of malarial parasites,” Nature 273, 621-622 (1978).
[CrossRef]

Opt. Express (1)

Parasitol. Today (1)

L. H. Bannister, J. M. Hopkins, R. E. Fowler, S. Krishna, and G. H. Mitchell, “A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages,” Parasitol. Today 16, 427-433 (2000).
[CrossRef]

Photochem. Photobiol. Sci. (1)

K. R. Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations,” Photochem. Photobiol. Sci. 3, 132-137 (2004).
[CrossRef]

Proc. Helm. Soc. Wash. (1)

W. Trager, S. G. Lahgreth, E. G. Platzer, “Viability and fine structure of extracellular Plasmodium lophurae prepared by different methods,” Proc. Helm. Soc. Wash. 39, 220-230(1972).

Proc. Natl. Acad. Sci. USA (2)

D. E. Goldberg, A. F. G. Slater, A. Cerami, and G. B. Henderson, “Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle,” Proc. Natl. Acad. Sci. USA 87, 2931-2935 (1990).
[CrossRef]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730-13735 (2008).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

C. A. Emeis, L. J. Oosterhoff, and G. de Vries, “Numerical evaluation of Kramers-Kronig relations,” Proc. R. Soc. London Ser. A 297, 54-65 (1967).
[CrossRef]

Other (4)

Broad Institute, Plasmodium falciparum database, Genome statistics, http://www.broadinstitute.org/annotation/genome/plasmodium_falciparum_spp/GenomeStats.html.

M. B. Huglin, “Specific refractive index increments,” in Light Scattering from Polymer Solutions, M. B. Huglin, ed. (Academic, 1972), Chap. 6.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Pergamon, 1969).

A. Garcia-Lopez, Y. Serebrennikova, and L. H. Garcia-Rubio, Claro Scientific LLC, 10100 Dr. Martin Luther King Jr. St. N., St. Petersburg, Fla. 33716, USA, are preparing a manuscript to be called “An interpretation model for the multiwavelength transmission spectra of red blood cells.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the P. falciparum model: the protozoan cell is approximated as a weighted sum of three structural groups: cell body and digestive vacuole ( DV ), cell body and nucleus ( NU ), and cell body and structural organelles ( ORG ).

Fig. 2
Fig. 2

(a) Comparison between the measured and predicted UV–visible spectroscopy spectra of hemozoin particles extracted from mature stages of P. falciparum. (b) The imaginary k ( λ ) and real n ( λ ) parts of the estimated refractive index of the extracted hemozoin.

Fig. 3
Fig. 3

UV–visible spectroscopy spectra of P. falciparum ring stages extracted from three independently prepared erythrocyte cultures (the spectra of one to three replicate samples extracted from each culture are shown). The optical density spectra were normalized with their corresponding 230 900 nm averages to eliminate the effect of cell number density and, thus, to allow direct comparison of the spectral features.

Fig. 4
Fig. 4

(a) Comparison of the UV–visible spectroscopy spectra of P. falciparum ring, trophozoite, and schizont stages extracted from erythrocyte cultures. The optical density spectra were normalized with their corresponding 230 900 nm averages to eliminate the effect of cell number density and, thus, to allow direct comparison of the spectral features. (b) Comparison of the corresponding first derivatives.

Fig. 5
Fig. 5

Comparison between the measured UV–visible spectroscopy spectrum ( τ meas ) and the corresponding predicted spectrum ( τ calc ) of the P. falciparum ring stage extracted from erythrocyte cell culture. The difference between the measured and predicted spectra ( σ res ) and the predicted spectral contribution from the nucleus ( τ NU ), organelles ( τ ORG ), and digestive vacuole ( τ DV ) structural components are shown.

Fig. 6
Fig. 6

Comparison between the measured UV–visible spectroscopy spectrum ( τ meas ) and the corresponding predicted spectrum ( τ calc ) of the P. falciparum trophozoite stage extracted from erythrocyte cell culture. The difference among the measured and predicted spectra ( σ res ) and the predicted spectral contribution from the nucleus ( τ NU ), organelles ( τ ORG ), and digestive vacuole ( τ DV ) structural components are shown.

Fig. 7
Fig. 7

Comparison between the measured UV–visible spectroscopy spectrum ( τ meas ) and the corresponding predicted spectrum ( τ calc ) of the P. falciparum schizont stage extracted from erythrocyte cell culture. The difference between the measured and predicted spectra ( σ res ) and the predicted spectral contribution from the nucleus ( τ NU ), organelles ( τ ORG ), and digestive vacuole ( τ DV ) structural components are shown.

Tables (4)

Tables Icon

Table 1 Composition of the Structural Groups of the P. falciparum Interpretation Model

Tables Icon

Table 2 Summary of the Values of the Structural and Compositional Parameters of P. falciparum Stages Obtained with the Interpretation Model

Tables Icon

Table 3 Sensitivity of the Model Computed as the Percent Change in the Calculated Optical Density a in response to the ± 50 % Perturbation of the Model Parameter Values of the Ring and Trophozoite Stages

Tables Icon

Table 4 Summary of the Estimates of Structural and Compositional Parameters of P. falciparum Obtained from the Published Literature

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ ( λ 0 ) = N p ( π 4 ) { ω DV Q ext , DV D 2 + ω NU Q ext , NU D 2 + ω ORG Q ext , ORG D 2 } .
ω DV + ω NU + ω ORG = 1.
Q ext = 2 x 2 n = 1 ( 2 n + 1 ) { Re ( a n + b n ) } ,
k i = j = 1 M i υ i j k j n i = j = 1 M i υ i j n j .
n ( λ 0 ) = a 0 + a 1 λ 0 2 + a 2 λ 0 4 + .

Metrics