Abstract

In recent years, new generation spectrophotometers are increasingly used in biomedical applications. Handheld spectrophotometers, offering compactness, versatility, and low cost, have facilitated a broad array of applications in biomedical optics. However, despite the popularity and the diverse range of applications, a detailed characterization of many of these new spectrophotometers in terms of stray light and noise characteristics is missing from the literature. Such a popular instrument (USB2000) is characterized in detail with particular focus and emphasis on its noise and stray light characteristics. The results of the analysis may be useful to numerous users of this and other similar instruments in a diverse range of applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Brennan, G. I. Zonios, T. D. Wang, R. P. Rava, G. B. Hayes, R. R. Dasari, and M. S. Feld, “Portable laser spectrofluorimeter system for in vivo human tissue fluorescence studies,” Appl. Spectrosc. 47, 2081-2086 (1993).
    [CrossRef]
  2. http://www.oceanoptics.com/.
  3. H. Oliver and H. Moseley, “The use of diode array spectroradiometers for dosimetry in phototherapy,” Phys. Med. Biol. 47, 4411-4421 (2002).
    [CrossRef]
  4. A. Coleman, R. Sarkany, and S. Walker, “Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer,” Phys. Med. Biol. 53, 5239-5255 (2008).
    [CrossRef]
  5. M. Johns, C. A. Giller, D. C. German, and H. L. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828-4842(2005).
    [CrossRef]
  6. M. B. Lilledahl, O. A. Haugen, M. Barkost, and L. O. Svaasand, “Reflection spectroscopy of atherosclerotic plaque,” J. Biomed. Opt. 11, 021005 (2006).
  7. S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).
  8. K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).
  9. T. Shi and C. A. DiMarzio, “Multispectral method for skin imaging: development and validation,” Appl. Opt. 46, 8619-8626 (2007).
    [CrossRef]
  10. M. Canpolat, A. G. Gökhan, A. Çiftçioğlu, and N. Erin, “Differentiation of melanoma from non-cancerous tissue in an animal model using elastic light single-scattering spectroscopy,” Technol. Cancer Res. Treat. 7, 235-240 (2008).
  11. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
    [CrossRef]
  12. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
  13. G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
    [CrossRef]
  14. K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008).
    [CrossRef]
  15. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111-1119 (2006).
    [CrossRef]
  16. S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
    [CrossRef]
  17. L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333-341 (2005).
    [CrossRef]

2009

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

2008

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

A. Coleman, R. Sarkany, and S. Walker, “Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer,” Phys. Med. Biol. 53, 5239-5255 (2008).
[CrossRef]

M. Canpolat, A. G. Gökhan, A. Çiftçioğlu, and N. Erin, “Differentiation of melanoma from non-cancerous tissue in an animal model using elastic light single-scattering spectroscopy,” Technol. Cancer Res. Treat. 7, 235-240 (2008).

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008).
[CrossRef]

2007

2006

2005

L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333-341 (2005).
[CrossRef]

M. Johns, C. A. Giller, D. C. German, and H. L. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828-4842(2005).
[CrossRef]

2003

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

2002

H. Oliver and H. Moseley, “The use of diode array spectroradiometers for dosimetry in phototherapy,” Phys. Med. Biol. 47, 4411-4421 (2002).
[CrossRef]

1993

Barkost, M.

M. B. Lilledahl, O. A. Haugen, M. Barkost, and L. O. Svaasand, “Reflection spectroscopy of atherosclerotic plaque,” J. Biomed. Opt. 11, 021005 (2006).

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

Bensalah, K.

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Bhatia, S.

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

Brennan, J. F.

Brown, S. W.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111-1119 (2006).
[CrossRef]

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

Cadeddu, J.

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Canpolat, M.

M. Canpolat, A. G. Gökhan, A. Çiftçioğlu, and N. Erin, “Differentiation of melanoma from non-cancerous tissue in an animal model using elastic light single-scattering spectroscopy,” Technol. Cancer Res. Treat. 7, 235-240 (2008).

Çiftçioglu, A.

M. Canpolat, A. G. Gökhan, A. Çiftçioğlu, and N. Erin, “Differentiation of melanoma from non-cancerous tissue in an animal model using elastic light single-scattering spectroscopy,” Technol. Cancer Res. Treat. 7, 235-240 (2008).

Clark, D. K.

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

Coleman, A.

A. Coleman, R. Sarkany, and S. Walker, “Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer,” Phys. Med. Biol. 53, 5239-5255 (2008).
[CrossRef]

Dasari, R. R.

DiMarzio, C. A.

Dimou, A.

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
[CrossRef]

Erin, N.

M. Canpolat, A. G. Gökhan, A. Çiftçioğlu, and N. Erin, “Differentiation of melanoma from non-cancerous tissue in an animal model using elastic light single-scattering spectroscopy,” Technol. Cancer Res. Treat. 7, 235-240 (2008).

Feinholz, M. E.

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

Feld, M. S.

Flora, S. J.

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

Galaris, D.

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

German, D. C.

Giller, C. A.

Gökhan, A. G.

M. Canpolat, A. G. Gökhan, A. Çiftçioğlu, and N. Erin, “Differentiation of melanoma from non-cancerous tissue in an animal model using elastic light single-scattering spectroscopy,” Technol. Cancer Res. Treat. 7, 235-240 (2008).

Haugen, O. A.

M. B. Lilledahl, O. A. Haugen, M. Barkost, and L. O. Svaasand, “Reflection spectroscopy of atherosclerotic plaque,” J. Biomed. Opt. 11, 021005 (2006).

Hayes, G. B.

Huurto, L.

L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333-341 (2005).
[CrossRef]

Irie, K.

K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008).
[CrossRef]

Johns, M.

Johnson, B. C.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111-1119 (2006).
[CrossRef]

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

Johnson, M.

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

Jokela, K.

L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333-341 (2005).
[CrossRef]

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

Lilledahl, M. B.

M. B. Lilledahl, O. A. Haugen, M. Barkost, and L. O. Svaasand, “Reflection spectroscopy of atherosclerotic plaque,” J. Biomed. Opt. 11, 021005 (2006).

Lin, W.-C.

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

Liu, H.

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Liu, H. L.

Lykke, K. R.

Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111-1119 (2006).
[CrossRef]

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

McKinnon, A. E.

K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008).
[CrossRef]

Moseley, H.

H. Oliver and H. Moseley, “The use of diode array spectroradiometers for dosimetry in phototherapy,” Phys. Med. Biol. 47, 4411-4421 (2002).
[CrossRef]

Oh, S.

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

Ohno, Y.

Oliver, H.

H. Oliver and H. Moseley, “The use of diode array spectroradiometers for dosimetry in phototherapy,” Phys. Med. Biol. 47, 4411-4421 (2002).
[CrossRef]

Peswani, D.

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Ragheb, J.

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

Raman, J. D.

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Rava, R. P.

Sandberg, D. I.

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

Sarkany, R.

A. Coleman, R. Sarkany, and S. Walker, “Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer,” Phys. Med. Biol. 53, 5239-5255 (2008).
[CrossRef]

Shi, T.

Svaasand, L. O.

M. B. Lilledahl, O. A. Haugen, M. Barkost, and L. O. Svaasand, “Reflection spectroscopy of atherosclerotic plaque,” J. Biomed. Opt. 11, 021005 (2006).

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

Tuncel, A.

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Unsworth, K.

K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008).
[CrossRef]

Visuri, R.

L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333-341 (2005).
[CrossRef]

Walker, S.

A. Coleman, R. Sarkany, and S. Walker, “Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer,” Phys. Med. Biol. 53, 5239-5255 (2008).
[CrossRef]

Wang, T. D.

Woodhead, I. M.

K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008).
[CrossRef]

Yarbrough, M. A.

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

Ylianttila, L.

L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333-341 (2005).
[CrossRef]

Zeltser, I.

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Zong, Y.

Zonios, G.

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
[CrossRef]

Zonios, G. I.

Appl. Opt.

Appl. Spectrosc.

J. Biomed. Opt.

M. B. Lilledahl, O. A. Haugen, M. Barkost, and L. O. Svaasand, “Reflection spectroscopy of atherosclerotic plaque,” J. Biomed. Opt. 11, 021005 (2006).

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).

Meas. Sci. Technol.

K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead, “A model for measurement of noise in CCD digital-video cameras,” Meas. Sci. Technol. 19, 045207 (2008).
[CrossRef]

Metrologia

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, “Stray light correction algorithm for spectrographs,” Metrologia 40, S81-S83(2003).
[CrossRef]

Neurosurg. Focus

S. Bhatia, J. Ragheb, M. Johnson, S. Oh, D. I. Sandberg, and W.-C. Lin, “The role of optical spectroscopy in epilepsy surgery in children,” Neurosurg. Focus 25, E24 (2008).

Opt. Express

Photochem. Photobiol.

L. Ylianttila, R. Visuri, L. Huurto, and K. Jokela, “Evaluation of a single-monochromator diode array spectroradiometer for sunbed UV-radiation measurements,” Photochem. Photobiol. 81, 333-341 (2005).
[CrossRef]

Phys. Med. Biol.

H. Oliver and H. Moseley, “The use of diode array spectroradiometers for dosimetry in phototherapy,” Phys. Med. Biol. 47, 4411-4421 (2002).
[CrossRef]

A. Coleman, R. Sarkany, and S. Walker, “Clinical ultraviolet dosimetry with a CCD monochromator array spectroradiometer,” Phys. Med. Biol. 53, 5239-5255 (2008).
[CrossRef]

G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008).
[CrossRef]

Technol. Cancer Res. Treat.

M. Canpolat, A. G. Gökhan, A. Çiftçioğlu, and N. Erin, “Differentiation of melanoma from non-cancerous tissue in an animal model using elastic light single-scattering spectroscopy,” Technol. Cancer Res. Treat. 7, 235-240 (2008).

Urology

K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, and J. Cadeddu, “Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery,” Urology 73, 178-181 (2009).

Other

http://www.oceanoptics.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Left: Picture of the USB2000 showing USB cable connections (left) and SMA905 fiber optic input. Right: Schematic showing the internal components of the USB2000: (1) input SMA connector, (2) input slit, (3) input filter (optional), (4) collimating mirror, (5) grating, (6) focusing mirror, (7) detector lens (optional), and (8) CCD detector (picture and schematic courtesy of Ocean Optics, Inc.).

Fig. 2
Fig. 2

Readout noise is the dominant noise source for short integration times ( 3 ms here). Entrance slit was blocked during acquisition of this spectrum.

Fig. 3
Fig. 3

(a) Noise as a function of input light intensity; the solid line represents a best fit to Eq. (5), and (b) signal to noise ratio as a function of input light intensity. A white light tungsten-halogen light source was used for the measurements. Dark noise was negligible due to the very short 3 ms integration time.

Fig. 4
Fig. 4

Noise as a function of detector integration time: (a)  1 s and (b)  50 s . As integration time increases, dark noise increases and an uneven fixed pattern noise offset also appears at each pixel. Detector input was blocked during these measurements such that there was no photoelectron noise.

Fig. 5
Fig. 5

Dark noise as a function of integration time at a specific pixel. Data points correspond to individual measurements, while the solid line represents a best fit to Eq. (6). Detector input was blocked such that the vertical axis represents a combination of readout and dark noise signals only.

Fig. 6
Fig. 6

Noise versus mean fixed pattern noise offset, for all detector pixels, for three different integration times: (a)  3 ms , (b)  1 s , and (c)  50 s . The solid lines in (b) and (c) represent a linear fit to the data (appearing curved in the log-log plots). The horizontal axis represents the mean fixed pattern offset, while the vertical axis shows the random variation of this offset that is due to dark noise and readout noise (readout noise dominates in (a), while dark noise dominates in (b) and (c)). Detector input was blocked during measurements such that there was no photoelectron noise.

Fig. 7
Fig. 7

Stray light measurements: (a) using a 540 nm long-pass filter and white light illumination from a tungsten-halogen lamp, stray light can be measured below 500 nm , and (b) percentage of stray light in the 350 480 nm range. The filtered and unfiltered signals have been normalized such that their intensity matches at the long-wavelength end of the spectrum.

Fig. 8
Fig. 8

Monochromatic diode laser line ( 653 nm ) measured with the USB2000. Line broadening due to the slit scattering function of the instrument and stray light can be clearly observed over a spectral range approximately 100 nm wide, centered at the laser wavelength. Some data points are missing because they represent negative values not shown in log scale.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N = ( N R 2 + N D 2 + N S 2 ) 1 / 2 .
N = i = 1 k ( I ¯ I i ) 2 k 1 ,
N D = ( n D ) 1 / 2 ,
N S = ( n S ) 1 / 2 .
N = ( N R 2 + S G ) 1 / 2 .
N = ( N R 2 + T n d G 2 ) 1 / 2 .

Metrics