Abstract

Details of light depolarization in turbid media were investigated using polarization-sensitive Monte Carlo simulations. The surviving linear and circular polarization fractions of photons undergoing a particular number of scattering events were studied for different optical properties of the turbid media. It was found that the threshold number of photon scattering interactions that fully randomize the incident polarization (defined here as <1% surviving polarization fraction) is not a constant, but varies with the photon detection angle. Larger detection angles, close to backscattering direction, show lower full depolarization threshold number for a given set of sample’s optical properties. The Monte Carlo simulations also confirm that depolarization is not only controlled by the number of scattering events and detection geometry, but is also strongly influenced by other factors such as anisotropy g, medium linear birefringence, and the polarization state of the incident light.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001).
    [CrossRef]
  2. N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
    [CrossRef]
  3. B. J. DeBoo, J. M. Sasian, R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44, 5434–5445 (2005).
    [CrossRef] [PubMed]
  4. Y. Liu, Y. L. Kim, X. Li, V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13, 601–611 (2005).
    [CrossRef] [PubMed]
  5. N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006).
    [CrossRef]
  6. X. Guo, M. F. G. Wood, I. A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007).
    [CrossRef] [PubMed]
  7. I. Charalambous, R. Cucu, A. Dogariu, A. Podoleanu, “Experimental investigation of circular light depolarization using polarization sensitive OCT,” Proc. SPIE 6429, 64291S (2007).
    [CrossRef]
  8. X. Guo, M. F. G. Wood, I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
    [CrossRef]
  9. B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polar imeter,” Diab. Technol. Ther. 8, 156–164 (2006).
    [CrossRef]
  10. Yu. Lo, Tsung. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259, 40–48 (2006).
    [CrossRef]
  11. X. Guo, M. F. G. Wood, I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46, 4491–4500 (2007).
    [CrossRef] [PubMed]
  12. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17, 13792–13809 (2009).
    [CrossRef] [PubMed]
  13. E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, “Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results,” Appl. Opt. 44, 2519–2529 (2005).
    [CrossRef] [PubMed]
  14. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15, 10649–10665 (2007).
    [CrossRef] [PubMed]
  15. D. Yu. Churmakov, V. L. Kuzmin, I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36, 1009–1015 (2006).
    [CrossRef]
  16. I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
    [CrossRef]
  17. V. L. Kuz’min, I. V. Meglinski, “Backscattering of linearly and circularly polarized light in randomly inhomogeneous media,” Opt. Spectrosc. 106, 257–267 (2009).
    [CrossRef]
  18. D. Côté, I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
    [CrossRef] [PubMed]
  19. D. Côté, I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148–163 (2005).
    [CrossRef] [PubMed]
  20. M. F. G. Wood, X. Guo, I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt. 12, 014029 (2007).
    [CrossRef] [PubMed]
  21. B. Kaplan, G. Ledanois, B. Drévillon, “Muller Matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40, 2769–2777 (2001).
    [CrossRef]
  22. F. Jaillon, H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).
    [CrossRef] [PubMed]
  23. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  24. X. Guo, M. F. G. Wood, I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11, 041105 (2006).
    [CrossRef] [PubMed]
  25. N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
    [CrossRef] [PubMed]
  26. S. Jiao, G. Yao, L. V. Wang, “Depth-resolved two- dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt. 39, 6318–6324 (2000).
    [CrossRef]
  27. S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
    [CrossRef] [PubMed]
  28. M. Sakami, A. Dogariu, “Polarized light-pulse transport through scattering media,” J. Opt. Soc. Am. A 23, 664–670 (2006).
    [CrossRef]
  29. K. C. Hadley, I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
    [CrossRef] [PubMed]
  30. X. Wang, G. Yao, L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
    [CrossRef] [PubMed]
  31. A. Ishimaru, S. Jaruwatanadilok, Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5520 (2001).
    [CrossRef]

2009

V. L. Kuz’min, I. V. Meglinski, “Backscattering of linearly and circularly polarized light in randomly inhomogeneous media,” Opt. Spectrosc. 106, 257–267 (2009).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17, 13792–13809 (2009).
[CrossRef] [PubMed]

2008

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

2007

2006

M. Sakami, A. Dogariu, “Polarized light-pulse transport through scattering media,” J. Opt. Soc. Am. A 23, 664–670 (2006).
[CrossRef]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006).
[CrossRef]

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polar imeter,” Diab. Technol. Ther. 8, 156–164 (2006).
[CrossRef]

Yu. Lo, Tsung. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259, 40–48 (2006).
[CrossRef]

D. Yu. Churmakov, V. L. Kuzmin, I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36, 1009–1015 (2006).
[CrossRef]

2005

2004

I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
[CrossRef]

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

D. Côté, I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

2003

2002

X. Wang, G. Yao, L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[CrossRef] [PubMed]

K. C. Hadley, I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

2001

D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001).
[CrossRef]

B. Kaplan, G. Ledanois, B. Drévillon, “Muller Matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40, 2769–2777 (2001).
[CrossRef]

A. Ishimaru, S. Jaruwatanadilok, Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5520 (2001).
[CrossRef]

2000

Agafonov, D. N.

D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001).
[CrossRef]

Anumula, H.

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polar imeter,” Diab. Technol. Ther. 8, 156–164 (2006).
[CrossRef]

Backman, V.

Berrocal, E.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cameron, B. D.

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polar imeter,” Diab. Technol. Ther. 8, 156–164 (2006).
[CrossRef]

Charalambous, I.

I. Charalambous, R. Cucu, A. Dogariu, A. Podoleanu, “Experimental investigation of circular light depolarization using polarization sensitive OCT,” Proc. SPIE 6429, 64291S (2007).
[CrossRef]

Chipman, R. A.

Churmakov, D. Y.

E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, “Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results,” Appl. Opt. 44, 2519–2529 (2005).
[CrossRef] [PubMed]

I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
[CrossRef]

Churmakov, D. Yu.

D. Yu. Churmakov, V. L. Kuzmin, I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36, 1009–1015 (2006).
[CrossRef]

Côté, D.

D. Côté, I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148–163 (2005).
[CrossRef] [PubMed]

D. Côté, I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

Cucu, R.

I. Charalambous, R. Cucu, A. Dogariu, A. Podoleanu, “Experimental investigation of circular light depolarization using polarization sensitive OCT,” Proc. SPIE 6429, 64291S (2007).
[CrossRef]

DeBoo, B. J.

Dogariu, A.

I. Charalambous, R. Cucu, A. Dogariu, A. Podoleanu, “Experimental investigation of circular light depolarization using polarization sensitive OCT,” Proc. SPIE 6429, 64291S (2007).
[CrossRef]

M. Sakami, A. Dogariu, “Polarized light-pulse transport through scattering media,” J. Opt. Soc. Am. A 23, 664–670 (2006).
[CrossRef]

Drévillon, B.

Ghosh, N.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006).
[CrossRef]

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Greenhalgh, D. A.

I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
[CrossRef]

Guo, X.

X. Guo, M. F. G. Wood, I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt. 12, 014029 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46, 4491–4500 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

Gupta, P. K.

N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006).
[CrossRef]

Gupta, P. Kumar

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Gupta, S.

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Hadley, K. C.

K. C. Hadley, I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ishimaru, A.

Jaillon, F.

Jaiswal, V.

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Jaruwatanadilok, S.

Jermy, M. C.

E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, “Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results,” Appl. Opt. 44, 2519–2529 (2005).
[CrossRef] [PubMed]

I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
[CrossRef]

Jiao, S.

Kang, J.

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

Kang, M.

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

Kaplan, B.

Kim, B.

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

Kim, Y. L.

Kuga, Y.

Kuz’min, V. L.

V. L. Kuz’min, I. V. Meglinski, “Backscattering of linearly and circularly polarized light in randomly inhomogeneous media,” Opt. Spectrosc. 106, 257–267 (2009).
[CrossRef]

Kuzmin, V. L.

D. Yu. Churmakov, V. L. Kuzmin, I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36, 1009–1015 (2006).
[CrossRef]

Ledanois, G.

Lee, S.

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

Li, R.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

Li, S.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

Li, X.

Linne, M. A.

Liu, Y.

Lo, Yu.

Yu. Lo, Tsung. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259, 40–48 (2006).
[CrossRef]

Majumder, S. K.

N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006).
[CrossRef]

Meglinski, I. V.

V. L. Kuz’min, I. V. Meglinski, “Backscattering of linearly and circularly polarized light in randomly inhomogeneous media,” Opt. Spectrosc. 106, 257–267 (2009).
[CrossRef]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17, 13792–13809 (2009).
[CrossRef] [PubMed]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15, 10649–10665 (2007).
[CrossRef] [PubMed]

D. Yu. Churmakov, V. L. Kuzmin, I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36, 1009–1015 (2006).
[CrossRef]

E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, “Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results,” Appl. Opt. 44, 2519–2529 (2005).
[CrossRef] [PubMed]

I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
[CrossRef]

Oh, J.

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

Paciaroni, M. E.

Podoleanu, A.

I. Charalambous, R. Cucu, A. Dogariu, A. Podoleanu, “Experimental investigation of circular light depolarization using polarization sensitive OCT,” Proc. SPIE 6429, 64291S (2007).
[CrossRef]

Pradhan, A.

N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006).
[CrossRef]

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Romanov, V. P.

E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, “Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results,” Appl. Opt. 44, 2519–2529 (2005).
[CrossRef] [PubMed]

I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
[CrossRef]

Saint-Jalmes, H.

Sakami, M.

Sasian, J. M.

Sedarsky, D. L.

Singh, R. P.

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Sinichkin, Yu. P.

D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001).
[CrossRef]

Vitkin, I. A.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

M. F. G. Wood, X. Guo, I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt. 12, 014029 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46, 4491–4500 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

D. Côté, I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148–163 (2005).
[CrossRef] [PubMed]

D. Côté, I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

K. C. Hadley, I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

Wang, L. V.

Wang, X.

Weisel, R. D.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

Wilson, B. C.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

Wood, M. F. G.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46, 4491–4500 (2007).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt. 12, 014029 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Monte Carlo study of pathlength distribution of polarized light in turbid media,” Opt. Express 15, 1348–1360 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

Yao, G.

Yoo, Ji.

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

Yu, Tsung.

Yu. Lo, Tsung. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259, 40–48 (2006).
[CrossRef]

Zakharov, P. V.

D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001).
[CrossRef]

Zimnyakov, D. A.

D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001).
[CrossRef]

Appl. Opt.

S. Jiao, G. Yao, L. V. Wang, “Depth-resolved two- dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Appl. Opt. 39, 6318–6324 (2000).
[CrossRef]

B. Kaplan, G. Ledanois, B. Drévillon, “Muller Matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation,” Appl. Opt. 40, 2769–2777 (2001).
[CrossRef]

A. Ishimaru, S. Jaruwatanadilok, Y. Kuga, “Polarized pulse waves in random discrete scatterers,” Appl. Opt. 40, 5495–5520 (2001).
[CrossRef]

X. Wang, G. Yao, L. V. Wang, “Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose,” Appl. Opt. 41, 792–801 (2002).
[CrossRef] [PubMed]

F. Jaillon, H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290–3296 (2003).
[CrossRef] [PubMed]

E. Berrocal, D. Y. Churmakov, V. P. Romanov, M. C. Jermy, I. V. Meglinski, “Crossed source–detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results,” Appl. Opt. 44, 2519–2529 (2005).
[CrossRef] [PubMed]

B. J. DeBoo, J. M. Sasian, R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44, 5434–5445 (2005).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46, 4491–4500 (2007).
[CrossRef] [PubMed]

Diab. Technol. Ther.

B. D. Cameron, H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polar imeter,” Diab. Technol. Ther. 8, 156–164 (2006).
[CrossRef]

J. Biomed. Opt.

D. Côté, I. A. Vitkin, “Balanced detection for low-noise precision polarimetric measurements of optically active, multiply scattering tissue phantoms,” J. Biomed. Opt. 9, 213–220 (2004).
[CrossRef] [PubMed]

M. F. G. Wood, X. Guo, I. A. Vitkin, “Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology,” J. Biomed. Opt. 12, 014029 (2007).
[CrossRef] [PubMed]

X. Guo, M. F. G. Wood, I. A. Vitkin, “Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter,” J. Biomed. Opt. 11, 041105 (2006).
[CrossRef] [PubMed]

S. Lee, J. Kang, Ji. Yoo, M. Kang, J. Oh, B. Kim, “Quantification of scattering changes using polarization sensitive optical coherence tomography,” J. Biomed. Opt. 13, 054032 (2008).
[CrossRef] [PubMed]

K. C. Hadley, I. A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media,” J. Biomed. Opt. 7, 291–299 (2002).
[CrossRef] [PubMed]

J. Biophotonics

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2,145–156 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Laser Phys. Lett.

I. V. Meglinski, V. P. Romanov, D. Y. Churmakov, E. Berrocal, M. C. Jermy, D. A. Greenhalgh, “Low and high order light scattering in particulate media,” Laser Phys. Lett. 1, 387–390 (2004).
[CrossRef]

Opt. Commun.

Yu. Lo, Tsung. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259, 40–48 (2006).
[CrossRef]

X. Guo, M. F. G. Wood, I. A. Vitkin, “A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media,” Opt. Commun. 281, 380–387 (2008).
[CrossRef]

Opt. Express

Opt. Spectrosc.

V. L. Kuz’min, I. V. Meglinski, “Backscattering of linearly and circularly polarized light in randomly inhomogeneous media,” Opt. Spectrosc. 106, 257–267 (2009).
[CrossRef]

Phys. Lett. A

N. Ghosh, P. K. Gupta, A. Pradhan, S. K. Majumder, “Anomalous behavior of depolarization of light in a turbid medium,” Phys. Lett. A 354, 236–242 (2006).
[CrossRef]

Phys. Rev. E

N. Ghosh, A. Pradhan, P. Kumar Gupta, S. Gupta, V. Jaiswal, R. P. Singh, “Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer,” Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Proc. SPIE

I. Charalambous, R. Cucu, A. Dogariu, A. Podoleanu, “Experimental investigation of circular light depolarization using polarization sensitive OCT,” Proc. SPIE 6429, 64291S (2007).
[CrossRef]

Quantum Electron.

D. Yu. Churmakov, V. L. Kuzmin, I. V. Meglinski, “Application of the vector Monte-Carlo method in polarisation optical coherence tomography,” Quantum Electron. 36, 1009–1015 (2006).
[CrossRef]

Waves Random Media

D. A. Zimnyakov, Yu. P. Sinichkin, P. V. Zakharov, D. N. Agafonov, “Residual polarization of non-coherently backscattered linearly polarized light: the influence of the anisotropy parameter of the scattering medium,” Waves Random Media 11, 395–412 (2001).
[CrossRef]

Other

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cylindrical geometry used in the MC simulations. Linearly (in x y plane) or circularly polarized light incidents at O on a vertically oriented cylindrical sample, 40 mm in height and 8 mm in diameter. The turbid sample is modeled as a water suspension with polystyrene spherical scatterers (0.1 to 2.05 μm in radius). The scattered light is collected by a small detector element at P ( θ , ψ ) on the surface of the cylinder with an acceptance angle δ. θ is the detection direction (the angle between the forward direction X and the normal to the detector element); ψ is the azimuthal angle at P. When modeling birefringence, an extraordinary axis b oriented in the x y (incident) plane is assumed.

Fig. 2
Fig. 2

Scattering dependence of depolarization. Surviving linear polarization fraction β L N versus the number of scattering events N (from 1 to 72). The photons were collected at detection angles θ = 180 ° (solid square), 135 ° (solid circle) and 99 ° (solid triangle) at fixed azimuthal angle ψ = 0 ° and acceptance angle δ = 48 ° .

Fig. 3
Fig. 3

Scattering coefficient effect on depolarization. (a) surviving linear polarization fraction β L N versus scattering coefficient μ s (from 50 to 250 cm 1 ) at different detection angles θ and the number of scattering events N: square + line is for θ = 180 ° , N = 1 ; circle + line is for θ = 135 ° , N = 45 ; triangle + line is for θ = 121 ° , N = 45 . (b) Total surviving linear polarization fraction β L T versus scattering coefficient μ s with detection angle θ = 180 ° , 135 ° and 121 ° . In this and subsequent figures, symbol = modeling results; lines = guides for the eye.

Fig. 4
Fig. 4

Anisotropy g and scattering size r effects on depolarization of singly scattered light at detection angle θ = 180 ° . (a) Anisotropy versus scatterer radius. (b) Surviving linear polarization fraction β L T versus anisotropy g. (c) Surviving linear polarization fraction β L T versus scatterer radius r for a g value of 0.89.

Fig. 5
Fig. 5

Anisotropy g and scattering size r effects on phase function near backscattering direction ( Δ θ = 175 ° 180 ° ). (a) Phase function intensity near the backscattering direction versus anisotropy g. (b) Phase function intensity near the backscattering direction versus scatterer radius r.

Fig. 6
Fig. 6

Birefringence effects on depolarization. The detection angle θ is 180 ° . (a) Surviving linear polarization fraction β L N versus the number of scattering events N (from 1 to 8) with and without birefringence; see text for Δ n and b specification. (b) Surviving circular and linear polarization fractions β C N and β L N [the same dataset as in (a)] versus the number of scattering events N with birefringence.

Fig. 7
Fig. 7

Incident polarization state effect on depolarization. The anisotropy g and the scattering coefficient μ s are fixed at 0.89 and 100 cm 1 , respectively. (a) Surviving linear and circular polarization fractions β L N and β C N versus the number of scattering events N at θ = 180 ° . (b) Surviving linear and circular polarization fractions β L N and β C N versus the number of scattering events N at θ = 135 ° . (c) Total surviving linear and circular polarization fractions β L T and β C T versus detection angle θ ( 99 ° 180 ° ) .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N a = N = 1 N I N I T .

Metrics