Abstract

Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100MHz to in excess of 350GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imag ing techniques are described along with several application results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
    [CrossRef]
  2. R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
    [CrossRef]
  3. P. R. Coward and R. Appleby, “Development of an illumination chamber for indoor millimeter-wave imaging,” Proc. SPIE 5077, 54–61 (2003).
    [CrossRef]
  4. C. A. Martin, W. Manning, V. G. Kolinko, and M. Hall, “Flight test of a passive millimeter-wave imaging system,” Proc. SPIE 5789, 24–34 (2005).
    [CrossRef]
  5. M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
    [CrossRef]
  6. D. A. Wikner, “Passive millimeter-wave imagery of helicopter obstacles in a sand environment,” Proc. SPIE 6211, 621103 (2006).
    [CrossRef]
  7. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4, 39–50 (2003).
    [CrossRef]
  8. G. R. Huguenin, “A millimeter wave focal plane array imager,” Proc. SPIE 2211, 300–301 (1994).
    [CrossRef]
  9. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
    [CrossRef]
  10. D. L. Mensa, High Resolution Radar Cross-Section Imaging (Artech House, 1991).
  11. D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
    [CrossRef]
  12. J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
    [CrossRef]
  13. D. Gabor, “A new microscope principle,” Nature 161, 177–178(1948).
    [CrossRef]
  14. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130(1962).
    [CrossRef]
  15. N. H. Farhat, “Microwave holography and its applications in modern aviation,” in Engineering Applications of Holography Symposium Proceedings (SPIE, 1972), pp. 295–314.
  16. B. P. Hildebrand and B. B. Brenden, An Introduction to Acoustical Holography, 1st ed. (Plenum, 1972).
  17. B. P. Hildebrand and K. A. Haines, “Holography by scanning,” J. Opt. Soc. Am. 59, 1–6 (1969).
    [CrossRef]
  18. G. Tricoles and N. H. Farhat, “Microwave holography: applications and techniques,” Proc. IEEE 65, 108–121 (1977).
    [CrossRef]
  19. Boyer, “Reconstruction of ultrasonic images by backward propagation,” in Acoustical Holography, Proceedings of the Third International Symposium on Acoustical Holography (1970), Vol. 3, pp. 333–348.
    [PubMed]
  20. M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
    [CrossRef] [PubMed]
  21. M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).
  22. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592(2001).
    [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  24. M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
    [CrossRef]
  25. D. Slater, Near-Field Antenna Measurements (Artech House, 1991).
  26. D. M. Sheen, D. L. McMakin, T. E. Hall, and R. H. Severtsen, “Real-time wideband cylindrical holographic surveillance system,” U.S. patent 5,859,609 (12 Jan. 1999).
  27. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection,” Proc. SPIE 4032, 52–60(2000).
    [CrossRef]
  28. D. M. Sheen, D. L. McMakin, W. M. Lechelt, and J. W. Griffin, “Circularly polarized millimeter-wave imaging for personnel screening,” Proc. SPIE 5789, 117–126 (2005).
    [CrossRef]
  29. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6211, 62110A (2006).
    [CrossRef]

2006

D. A. Wikner, “Passive millimeter-wave imagery of helicopter obstacles in a sand environment,” Proc. SPIE 6211, 621103 (2006).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

2005

D. M. Sheen, D. L. McMakin, W. M. Lechelt, and J. W. Griffin, “Circularly polarized millimeter-wave imaging for personnel screening,” Proc. SPIE 5789, 117–126 (2005).
[CrossRef]

C. A. Martin, W. Manning, V. G. Kolinko, and M. Hall, “Flight test of a passive millimeter-wave imaging system,” Proc. SPIE 5789, 24–34 (2005).
[CrossRef]

2004

R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
[CrossRef]

2003

P. R. Coward and R. Appleby, “Development of an illumination chamber for indoor millimeter-wave imaging,” Proc. SPIE 5077, 54–61 (2003).
[CrossRef]

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4, 39–50 (2003).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

2001

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592(2001).
[CrossRef]

2000

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection,” Proc. SPIE 4032, 52–60(2000).
[CrossRef]

1995

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

1994

G. R. Huguenin, “A millimeter wave focal plane array imager,” Proc. SPIE 2211, 300–301 (1994).
[CrossRef]

1992

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
[CrossRef] [PubMed]

1991

M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
[CrossRef]

1984

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

1983

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[CrossRef]

1980

J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
[CrossRef]

1977

G. Tricoles and N. H. Farhat, “Microwave holography: applications and techniques,” Proc. IEEE 65, 108–121 (1977).
[CrossRef]

1969

1962

1948

D. Gabor, “A new microscope principle,” Nature 161, 177–178(1948).
[CrossRef]

Anderton, R. N.

R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Appleby, R.

R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

P. R. Coward and R. Appleby, “Development of an illumination chamber for indoor millimeter-wave imaging,” Proc. SPIE 5077, 54–61 (2003).
[CrossRef]

Ausherman, D. A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Barnes, A. R.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Boyer,

Boyer, “Reconstruction of ultrasonic images by backward propagation,” in Acoustical Holography, Proceedings of the Third International Symposium on Acoustical Holography (1970), Vol. 3, pp. 333–348.
[PubMed]

Brenden, B. B.

B. P. Hildebrand and B. B. Brenden, An Introduction to Acoustical Holography, 1st ed. (Plenum, 1972).

Coward, P. R.

R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
[CrossRef]

P. R. Coward and R. Appleby, “Development of an illumination chamber for indoor millimeter-wave imaging,” Proc. SPIE 5077, 54–61 (2003).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Davidheiser, R.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

Farhat, N. H.

G. Tricoles and N. H. Farhat, “Microwave holography: applications and techniques,” Proc. IEEE 65, 108–121 (1977).
[CrossRef]

N. H. Farhat, “Microwave holography and its applications in modern aviation,” in Engineering Applications of Holography Symposium Proceedings (SPIE, 1972), pp. 295–314.

Gabor, D.

D. Gabor, “A new microscope principle,” Nature 161, 177–178(1948).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Griffin, J. W.

D. M. Sheen, D. L. McMakin, W. M. Lechelt, and J. W. Griffin, “Circularly polarized millimeter-wave imaging for personnel screening,” Proc. SPIE 5789, 117–126 (2005).
[CrossRef]

Haines, K. A.

Hall, M.

C. A. Martin, W. Manning, V. G. Kolinko, and M. Hall, “Flight test of a passive millimeter-wave imaging system,” Proc. SPIE 5789, 24–34 (2005).
[CrossRef]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592(2001).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection,” Proc. SPIE 4032, 52–60(2000).
[CrossRef]

D. M. Sheen, D. L. McMakin, T. E. Hall, and R. H. Severtsen, “Real-time wideband cylindrical holographic surveillance system,” U.S. patent 5,859,609 (12 Jan. 1999).

Hauss, B.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

Hildebrand, B. P.

B. P. Hildebrand and K. A. Haines, “Holography by scanning,” J. Opt. Soc. Am. 59, 1–6 (1969).
[CrossRef]

B. P. Hildebrand and B. B. Brenden, An Introduction to Acoustical Holography, 1st ed. (Plenum, 1972).

Huguenin, G. R.

G. R. Huguenin, “A millimeter wave focal plane array imager,” Proc. SPIE 2211, 300–301 (1994).
[CrossRef]

Jenkins, W. K.

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[CrossRef]

Jones, H. M.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Kolinko, V. G.

C. A. Martin, W. Manning, V. G. Kolinko, and M. Hall, “Flight test of a passive millimeter-wave imaging system,” Proc. SPIE 5789, 24–34 (2005).
[CrossRef]

Kozma, A.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Lechelt, W. M.

D. M. Sheen, D. L. McMakin, W. M. Lechelt, and J. W. Griffin, “Circularly polarized millimeter-wave imaging for personnel screening,” Proc. SPIE 5789, 117–126 (2005).
[CrossRef]

Lee, P.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

Leith, E. N.

Lettington, A. H.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Manning, W.

C. A. Martin, W. Manning, V. G. Kolinko, and M. Hall, “Flight test of a passive millimeter-wave imaging system,” Proc. SPIE 5789, 24–34 (2005).
[CrossRef]

Martin, C. A.

C. A. Martin, W. Manning, V. G. Kolinko, and M. Hall, “Flight test of a passive millimeter-wave imaging system,” Proc. SPIE 5789, 24–34 (2005).
[CrossRef]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

D. M. Sheen, D. L. McMakin, W. M. Lechelt, and J. W. Griffin, “Circularly polarized millimeter-wave imaging for personnel screening,” Proc. SPIE 5789, 117–126 (2005).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592(2001).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection,” Proc. SPIE 4032, 52–60(2000).
[CrossRef]

D. M. Sheen, D. L. McMakin, T. E. Hall, and R. H. Severtsen, “Real-time wideband cylindrical holographic surveillance system,” U.S. patent 5,859,609 (12 Jan. 1999).

Mensa, D. L.

D. L. Mensa, High Resolution Radar Cross-Section Imaging (Artech House, 1991).

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4, 39–50 (2003).
[CrossRef]

Moore, M.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Munday, P. D.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Munson, D. C.

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[CrossRef]

Mussetto, M.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

O’Brien, J. D.

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[CrossRef]

Poggio, E. C.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

Price, S.

R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Robertson, D. A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Salmon, N. A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Severtsen, R. H.

D. M. Sheen, D. L. McMakin, T. E. Hall, and R. H. Severtsen, “Real-time wideband cylindrical holographic surveillance system,” U.S. patent 5,859,609 (12 Jan. 1999).

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

D. M. Sheen, D. L. McMakin, W. M. Lechelt, and J. W. Griffin, “Circularly polarized millimeter-wave imaging for personnel screening,” Proc. SPIE 5789, 117–126 (2005).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592(2001).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection,” Proc. SPIE 4032, 52–60(2000).
[CrossRef]

D. M. Sheen, D. L. McMakin, T. E. Hall, and R. H. Severtsen, “Real-time wideband cylindrical holographic surveillance system,” U.S. patent 5,859,609 (12 Jan. 1999).

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4, 39–50 (2003).
[CrossRef]

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

Sinclair, G. N.

R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

Slater, D.

D. Slater, Near-Field Antenna Measurements (Artech House, 1991).

Soumekh, M.

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
[CrossRef] [PubMed]

M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
[CrossRef]

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

Tricoles, G.

G. Tricoles and N. H. Farhat, “Microwave holography: applications and techniques,” Proc. IEEE 65, 108–121 (1977).
[CrossRef]

Upatnieks, J.

Walker, J. L.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
[CrossRef]

Wikner, D. A.

D. A. Wikner, “Passive millimeter-wave imagery of helicopter obstacles in a sand environment,” Proc. SPIE 6211, 621103 (2006).
[CrossRef]

Young, S.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4, 39–50 (2003).
[CrossRef]

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

IEEE Aerosp. Electron. Syst. Mag.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Mussetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for aircraft landing in low visibility conditions,” IEEE Aerosp. Electron. Syst. Mag. 10, 37–42 (1995).
[CrossRef]

IEEE Microwave Mag.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4, 39–50 (2003).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst.

D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984).
[CrossRef]

J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980).
[CrossRef]

IEEE Trans. Image Process.

M. Soumekh, “A system model and inversion for synthetic aperture radar imaging,” IEEE Trans. Image Process. 1, 64–76 (1992).
[CrossRef] [PubMed]

IEEE Trans. Microwave Theory Tech.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592(2001).
[CrossRef]

IEEE Trans. Signal Process.

M. Soumekh, “Bistatic synthetic aperture radar inversion with application in dynamic object imaging,” IEEE Trans. Signal Process. 39, 2044–2055 (1991).
[CrossRef]

J. Opt. Soc. Am.

Nature

D. Gabor, “A new microscope principle,” Nature 161, 177–178(1948).
[CrossRef]

Proc. IEEE

G. Tricoles and N. H. Farhat, “Microwave holography: applications and techniques,” Proc. IEEE 65, 108–121 (1977).
[CrossRef]

D. C. Munson, J. D. O’Brien, and W. K. Jenkins, “A tomographic formulation of spotlight-mode synthetic aperture radar,” Proc. IEEE 71, 917–925 (1983).
[CrossRef]

Proc. SPIE

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection,” Proc. SPIE 4032, 52–60(2000).
[CrossRef]

D. M. Sheen, D. L. McMakin, W. M. Lechelt, and J. W. Griffin, “Circularly polarized millimeter-wave imaging for personnel screening,” Proc. SPIE 5789, 117–126 (2005).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

G. R. Huguenin, “A millimeter wave focal plane array imager,” Proc. SPIE 2211, 300–301 (1994).
[CrossRef]

D. A. Wikner, “Passive millimeter-wave imagery of helicopter obstacles in a sand environment,” Proc. SPIE 6211, 621103 (2006).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Moore, A. H. Lettington, and D. A. Robertson, “Mechanically scanned real-time passive millimeter wave imaging at 94GHz,” Proc. SPIE 5077, 1–6 (2003).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, G. N. Sinclair, and P. R. Coward, “Whole-body 35GHz security scanner,” Proc. SPIE 5410, 244–251 (2004).
[CrossRef]

P. R. Coward and R. Appleby, “Development of an illumination chamber for indoor millimeter-wave imaging,” Proc. SPIE 5077, 54–61 (2003).
[CrossRef]

C. A. Martin, W. Manning, V. G. Kolinko, and M. Hall, “Flight test of a passive millimeter-wave imaging system,” Proc. SPIE 5789, 24–34 (2005).
[CrossRef]

Other

Boyer, “Reconstruction of ultrasonic images by backward propagation,” in Acoustical Holography, Proceedings of the Third International Symposium on Acoustical Holography (1970), Vol. 3, pp. 333–348.
[PubMed]

N. H. Farhat, “Microwave holography and its applications in modern aviation,” in Engineering Applications of Holography Symposium Proceedings (SPIE, 1972), pp. 295–314.

B. P. Hildebrand and B. B. Brenden, An Introduction to Acoustical Holography, 1st ed. (Plenum, 1972).

D. L. Mensa, High Resolution Radar Cross-Section Imaging (Artech House, 1991).

D. Slater, Near-Field Antenna Measurements (Artech House, 1991).

D. M. Sheen, D. L. McMakin, T. E. Hall, and R. H. Severtsen, “Real-time wideband cylindrical holographic surveillance system,” U.S. patent 5,859,609 (12 Jan. 1999).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Near-field rectilinear imaging configuration.

Fig. 2
Fig. 2

Schematic diagram of a typical radar transceiver for near-field imaging applications (simplified).

Fig. 3
Fig. 3

Wideband image-reconstruction process results for a synthesized target consisting of nine points arranged as a letter F: aperture phase history or hologram (upper left), spatial frequency distribution (upper right), and reconstructed image (bottom).

Fig. 4
Fig. 4

Photograph and wideband 3-D image of a Kiowa helicopter using an impulse radar with nominal 1 5 GHz frequency coverage.

Fig. 5
Fig. 5

X-band ( 8 12 GHz ) images of Bradley Fighting Vehicle (top, front, and end projections).

Fig. 6
Fig. 6

Three-dimensional 200 400 MHz GPR imaging results of twin waste storage tanks.

Fig. 7
Fig. 7

Compact real-time 2-D array imaging system: internal antenna array and transceiver (upper left), imaging system in use (upper right), and results for two metal F targets (lower left and right).

Fig. 8
Fig. 8

Cylindrical imaging system configuration.

Fig. 9
Fig. 9

U-band ( 40 60 GHz ) cylindrical images of mannequin with concealed weapons and items.

Fig. 10
Fig. 10

U-band ( 40 60 GHz ) combined cylindrical image of mannequin with concealed weapons and items.

Fig. 11
Fig. 11

Polarimetric imaging results at 10 20 GHz for a mannequin with concealed metal gun on its abdomen and simulated plastic explosive on its lower back. Left-side images are HH polarization, center images are RL polarization, and right-side images are RR polarization.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

s ( x , y , ω ) = f ( x , y , z ) e j 2 k ( x x ) 2 + ( y y ) 2 + ( z Z 1 ) 2 d x d y d z ,
2 k ( x x ) 2 + ( y y ) 2 + ( z Z 1 ) 2
f ( x , y , z ) = FT 3 D 1 { FT 2 D { s ( x , y , ω ) } e j 4 k 2 k x 2 k y 2 Z 1 } .
k x 2 + k y 2 + k z 2 = ( 2 k ) 2 = 4 ( ω c ) 2 ,
k z = 4 k 2 k x 2 k y 2 = 4 ( ω / c ) 2 k x 2 k y 2 .
δ x λ c 4 sin ( θ b / 2 ) ,
δ z = c 2 B ,
2 k ( R cos θ x ) 2 + ( R sin θ y ) 2 + ( z z ) 2 .
s ( θ , ω , z ) = f ( x , y , z ) e j 2 k ( R cos θ x ) 2 + ( R sin θ y ) 2 + ( z z ) 2 d x d y d z .
f ( x , y , z ) = FT 3 D 1 [ F ( k x , k y , k z ) ] .
F ( k x , k y , k z ) = FT 1 D ( ξ ) 1 [ S ( ξ , ω , k z ) e j 4 k r 2 R 2 ξ 2 ] function of ( θ , ω , k z ) | θ = tan 1 ( k y / k x ) ω = c 2 k x 2 + k y 2 + k z 2 k r = k x 2 + k y 2 ,
S ( ξ , ω , k z ) FT 2 D ( θ , z ) { s ( θ , ω , z ) }
Δ θ < π 2 k R tgt .

Metrics