Abstract

Passive millimeter wave (pmmW) imagers are quickly becoming practical sensor candidates for military and nonmilitary tasks. Our focus was to adapt the Night Vision [U.S. Army Research Development and Engineering Command, Communications and Electronics Research Development and Engineering Center, Night Vision and Electronics Sensors Directorate (NVESD)] passive thermal infrared imager performance models and apply them to pmmW imaging systems for prediction of field performance for the task of small watercraft and boat identification. The Night Vision Lab’s infrared sensor model has been evolving since the 1950s, with the most current model being NVThermIP [Night Vision Thermal and Image Processing (NVThermIP) Model Users Manual, Rev. 9 (U.S. Army RDECON, CERDEC, NVESD, 2006)]. It has wide recognition as an engineering tool for sensor evaluation. This effort included collecting pmmW signatures for a representative set of targets, conducting an observer perception experiment, and deriving the task difficulty criteria that can be used in NVThermIP for identification of boats. The task difficulty criteria are used by designers and managers to create systems capable of meeting specific performance criteria in the field.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.
  2. W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
    [CrossRef]
  3. V. E. Lyubchenko, The Science and Technology of Millimetre Wave Components and Devices (Taylor & Francis, 2002).
  4. “521TM IEEE Standard letter designations for radar-frequency bands,” IEEE Std. 521-2002 (IEEE, 2003).
  5. MMW Concepts LLC, “An analysis of atmospheric attenuation in the MMW region,” http://mmwconcepts.com/Services.html.
  6. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4(3), 39–50 (2003).
    [CrossRef]
  7. D. Ewen, R. Smith, and B. Belcher, “All weather capabilities of passive millimeter wave sensors,” Proc. SPIE 4032, 103–118(2000).
    [CrossRef]
  8. D. Wikner, “Polarmetric radiometry of natural scenes,” Proc. SPIE 4719, 391–396 (2002).
    [CrossRef]
  9. QinetiQ Technology Showcase, SPO-20, http://www.qinetiq.com/home/products/spo_20.html.
  10. Brijot Imaging Systems, Inc., Product Overview, http://www.brijot.com/products/index.php.
  11. C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
    [CrossRef]
  12. R. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (U.S. Army CERDEC, 2006), pp. 18–42, 47–51.
  13. Night Vision Thermal and Image Processing (NVThermIP) Model Users Manual, Rev. 9 (U.S. Army RDECON, CERDEC, NVESD, 2006).
  14. S. A. Klein, “Measuring, estimating, and understanding the psychometric function: a commentary,” Percept. Psychophys. 63, 1421–1455 (2001).
    [CrossRef]
  15. K. Krapels, R. G. Driggers, D. Deaver, S. K. Moyer, and J. Palmer, “Midwave infrared and visible sensor performance modeling: small craft identification discrimination criteria for maritime security,” Appl. Opt. 46, 7345–7353(2007).
    [CrossRef] [PubMed]
  16. K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
    [CrossRef]

2009

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

2008

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

2007

2003

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4(3), 39–50 (2003).
[CrossRef]

2002

D. Wikner, “Polarmetric radiometry of natural scenes,” Proc. SPIE 4719, 391–396 (2002).
[CrossRef]

2001

S. A. Klein, “Measuring, estimating, and understanding the psychometric function: a commentary,” Percept. Psychophys. 63, 1421–1455 (2001).
[CrossRef]

2000

D. Ewen, R. Smith, and B. Belcher, “All weather capabilities of passive millimeter wave sensors,” Proc. SPIE 4032, 103–118(2000).
[CrossRef]

1986

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
[CrossRef]

Agheera, S.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

Belcher, B.

D. Ewen, R. Smith, and B. Belcher, “All weather capabilities of passive millimeter wave sensors,” Proc. SPIE 4032, 103–118(2000).
[CrossRef]

Boettcher, E.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

Davidheiser, R.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

Deaver, D.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

K. Krapels, R. G. Driggers, D. Deaver, S. K. Moyer, and J. Palmer, “Midwave infrared and visible sensor performance modeling: small craft identification discrimination criteria for maritime security,” Appl. Opt. 46, 7345–7353(2007).
[CrossRef] [PubMed]

Dillon, T. E.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Driggers, R. G.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

K. Krapels, R. G. Driggers, D. Deaver, S. K. Moyer, and J. Palmer, “Midwave infrared and visible sensor performance modeling: small craft identification discrimination criteria for maritime security,” Appl. Opt. 46, 7345–7353(2007).
[CrossRef] [PubMed]

Ewen, D.

D. Ewen, R. Smith, and B. Belcher, “All weather capabilities of passive millimeter wave sensors,” Proc. SPIE 4032, 103–118(2000).
[CrossRef]

Garcia, J.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

Hauss, B.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

Hixson, J.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

Howard, R. J.

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
[CrossRef]

Ibbott, A. C.

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
[CrossRef]

Jacobs, E.

R. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (U.S. Army CERDEC, 2006), pp. 18–42, 47–51.

Klein, S. A.

S. A. Klein, “Measuring, estimating, and understanding the psychometric function: a commentary,” Percept. Psychophys. 63, 1421–1455 (2001).
[CrossRef]

Krapels, K.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

K. Krapels, R. G. Driggers, D. Deaver, S. K. Moyer, and J. Palmer, “Midwave infrared and visible sensor performance modeling: small craft identification discrimination criteria for maritime security,” Appl. Opt. 46, 7345–7353(2007).
[CrossRef] [PubMed]

Larson, P.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

Lee, P.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

LLC, MMW Concepts

MMW Concepts LLC, “An analysis of atmospheric attenuation in the MMW region,” http://mmwconcepts.com/Services.html.

Lyubchenko, V. E.

V. E. Lyubchenko, The Science and Technology of Millimetre Wave Components and Devices (Taylor & Francis, 2002).

MacKrides, D.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Marin, R. D.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4(3), 39–50 (2003).
[CrossRef]

Moyer, S. K.

Musetto, M.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

Palmer, J.

Parks, G. S.

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
[CrossRef]

Prather, D. W.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Ricketts, W. B.

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
[CrossRef]

Samluk, J.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Schuetz, C. A.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4(3), 39–50 (2003).
[CrossRef]

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

Smith, R.

D. Ewen, R. Smith, and B. Belcher, “All weather capabilities of passive millimeter wave sensors,” Proc. SPIE 4032, 103–118(2000).
[CrossRef]

Stein, E. L.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Vollmerhausen, R.

R. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (U.S. Army CERDEC, 2006), pp. 18–42, 47–51.

Walden, B.

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

Wikner, D.

D. Wikner, “Polarmetric radiometry of natural scenes,” Proc. SPIE 4719, 391–396 (2002).
[CrossRef]

Wilson, J. P.

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Wilson, W. J.

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
[CrossRef]

Young, S.

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4(3), 39–50 (2003).
[CrossRef]

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

Appl. Opt.

IEEE Microwave Mag.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Mag. 4(3), 39–50 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

W. J. Wilson, R. J. Howard, A. C. Ibbott, G. S. Parks, and W. B. Ricketts, “Millimeter-wave imaging sensor,” IEEE Trans. Microwave Theory Tech. 341026–1035 (1986),
[CrossRef]

Percept. Psychophys.

S. A. Klein, “Measuring, estimating, and understanding the psychometric function: a commentary,” Percept. Psychophys. 63, 1421–1455 (2001).
[CrossRef]

Proc. SPIE

K. Krapels, R. G. Driggers, P. Larson, J. Garcia, B. Walden, S. Agheera, D. Deaver, J. Hixson, and E. Boettcher, “Small craft ID criteria (N50/V50) for short wave infrared sensors in maritime security,” Proc. SPIE 6941, 694108(2008).
[CrossRef]

C. A. Schuetz, E. L. Stein Jr., J. Samluk, D. MacKrides, J. P. Wilson, R. D. Marin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

D. Ewen, R. Smith, and B. Belcher, “All weather capabilities of passive millimeter wave sensors,” Proc. SPIE 4032, 103–118(2000).
[CrossRef]

D. Wikner, “Polarmetric radiometry of natural scenes,” Proc. SPIE 4719, 391–396 (2002).
[CrossRef]

Other

QinetiQ Technology Showcase, SPO-20, http://www.qinetiq.com/home/products/spo_20.html.

Brijot Imaging Systems, Inc., Product Overview, http://www.brijot.com/products/index.php.

V. E. Lyubchenko, The Science and Technology of Millimetre Wave Components and Devices (Taylor & Francis, 2002).

“521TM IEEE Standard letter designations for radar-frequency bands,” IEEE Std. 521-2002 (IEEE, 2003).

MMW Concepts LLC, “An analysis of atmospheric attenuation in the MMW region,” http://mmwconcepts.com/Services.html.

R. Vollmerhausen and E. Jacobs, “The targeting task performance (TTP) metric: a new model for predicting target acquisition performance,” Technical Report AMSEL-NV-TR-230 (U.S. Army CERDEC, 2006), pp. 18–42, 47–51.

Night Vision Thermal and Image Processing (NVThermIP) Model Users Manual, Rev. 9 (U.S. Army RDECON, CERDEC, NVESD, 2006).

M. Shoucri, R. Davidheiser, B. Hauss, P. Lee, M. Musetto, S. Young, and L. Yujiri, “A passive millimeter wave camera for landing in low visibility conditions,” Proceedings of IEEE Conference on Digital Avionics Systems Conference (IEEE, 1994), pp. 93–98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Atmospheric attenuation in the mmW region under six different atmospheric conditions that are typical in the following locations: Boulder, Baltimore, Bellingham, Berkeley, Buffalo, and Basra, with the mmW “windows” highlighted [5].

Fig. 2
Fig. 2

Example of a pushbroom pmmW sensor. The system was over 400 lbs . and had a 120 × 2 pixel pushbroom scan, 30 in. dia optic, resolution 0.25 degree, NETD = 2 K , and FOV = 1 H × 30 V . (a) pmmW image, (b) visible image for comparison, and (c) image of the TRW pmmW sensor [5].

Fig. 3
Fig. 3

At the top is a photograph of the summer tree line measurement scene. At the bottom is a horizontally polarized 94 GHz radiometer image of the tree line. White is higher temperature. The trees are 350 m from the radiometer and were measured with a 2 ft. diameter antenna [8].

Fig. 4
Fig. 4

Imagery above shows a sample of pmmW imagery from 2007 and 2008. Here black is “hot” to make the images appear more like a visible image.

Fig. 5
Fig. 5

Visible imagery from the cue trainer and the qualification test.

Fig. 6
Fig. 6

(Top) Image of all three groups with their sensor systems. (Bottom) Image of a Manta tied down between the two piers.

Fig. 7
Fig. 7

Target’s apparent contrast in relationship to the CTF system .

Fig. 8
Fig. 8

Interface for eight, alternative forced-choice perception experiment. In this figure, the Yellowtail button has been selected by the observer.

Fig. 9
Fig. 9

University of Delaware’s 94 GHz and 35 GHz systems.

Fig. 10
Fig. 10

Pennsylvania State University Electro-Optics Center’ mmW sensor.

Fig. 11
Fig. 11

ARL’s 93 GHz system: both polarizations.

Fig. 12
Fig. 12

Image of a Manta taken at the same time, but different polarizations: vertical (a) and horizontal (b) polarization.

Tables (2)

Tables Icon

Table 1 All Sensor Specifications

Tables Icon

Table 2 N 50 and V 50 Values for pmmW and Three Other Wavebands for Comparison

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S = [ A tgt ] 1 / 2 .
RSS Δ T = [ ( T tgt T bkg ) 2 σ tgt 2 ] 1 / 2 ,
C = [ ( C tgt C bkg ) 2 σ tgt 2 ] 1 / 2 C tgt + C bkg ,
f ( x , b ) = 1 n e π ( x b ) 2 ,
I exp ( x , b ) = I orig ( x ) * * f ( x , b ) .
CTF system CTF eye MTF system .
TTP = ξ cuton ξ cutoff [ C CTF system ] 1 2 ξ .
V = TTP × S R .
P Corrected = P ID P Chance P Expert P Chance .
P ID ( V ) = ( V V 50 ) β 1 + ( V V 50 ) β ,
Confidence Interval = mean ± 1.96 ( stdev number of observers ) .

Metrics