Abstract

Terahertz (THz) spectroscopy, and especially THz imaging, holds large potential in the field of non destructive, contact-free testing. The ongoing advances in the development of THz systems, as well as the appearance of the first related commercial products, indicate that large-scale market introduction of THz systems is rapidly approaching. We review selected industrial applications for THz systems, comprising inline monitoring of compounding processes, plastic weld joint inspection, birefringence analysis of fiber-reinforced components, water distribution monitoring in polymers and plants, as well as quality inspection of food products employing both continuous wave and pulsed THz systems.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.Mittleman, ed., Sensing with Terahertz Radiation(Springer-Verlag, 2003).
  2. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
    [CrossRef]
  3. K.Sakai, ed., Terahertz Optoelectronics (Springer, 2005).
    [CrossRef]
  4. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
    [CrossRef]
  5. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
    [CrossRef]
  6. A. Nahata, A. S. Weling, and Tony F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  7. S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .
  8. N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005).
    [CrossRef]
  9. P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003).
    [CrossRef]
  10. H. Eisele, M. Naftaly, and R. Kamoua, “Generation of submillimeter-wave radiation with GaAs TUNNETT diodes and InP Gunn devices in a second or higher harmonic mode,” Int. J. Infrared Millim. Waves 26, 1–14 (2005).
    [CrossRef]
  11. T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
    [CrossRef]
  12. A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008).
    [CrossRef]
  13. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
    [CrossRef]
  14. A. Hirata, M. Harada, and T. Nagatsuma, “120 GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145–2153 (2003).
    [CrossRef]
  15. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
    [CrossRef]
  16. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005).
    [CrossRef]
  17. R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2
  18. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008).
    [CrossRef] [PubMed]
  19. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
    [CrossRef]
  20. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
    [CrossRef]
  21. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  22. X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electro. Waves Appl. 6, 85–106 (1992).
    [CrossRef]
  23. S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972–1974 (1991).
    [CrossRef]
  24. E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301(2005).
    [CrossRef]
  25. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100 μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282, 1304–1306 (2009).
    [CrossRef]
  26. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
    [CrossRef]
  27. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
    [CrossRef]
  28. M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997).
    [CrossRef]
  29. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
    [CrossRef]
  30. R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008).
    [CrossRef] [PubMed]
  31. A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
    [CrossRef] [PubMed]
  32. B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for terahertz imaging,” Opt. Express 15, 17652–17660 (2007).
    [CrossRef] [PubMed]
  33. B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Terahertz line detection by a microlens array coupled photoconductive antenna array,” Opt. Express 16, 18443–18450 (2008).
    [CrossRef] [PubMed]
  34. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [CrossRef]
  35. L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
    [CrossRef]
  36. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
    [CrossRef]
  37. M. Herrmann, M. Tani, and K. Sakai, “Display modes in time-resolved terahertz imaging,” Jpn. J. Appl. Phys. 39, 6254–6258 (2000).
    [CrossRef]
  38. C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
    [CrossRef]
  39. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
    [CrossRef]
  40. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [CrossRef]
  41. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
    [CrossRef]
  42. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
    [CrossRef]
  43. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47, 3254–3257 (2008).
    [CrossRef] [PubMed]
  44. V. A. Bershtein and V. A. Ryzhov, “Far infrared spectroscopy of polymers,” Adv. Polym. Sci. 114, 42–121 (1994).
  45. V. B. F. Mathoted, Calorimetry and Thermal Analysis of Polymers (Hanser, 1994).
  46. G. Rotter and H. Ishida, “Dynamic mechanical analysis of the glass transition: curve resolving applied to polymers,” Macromolecules 25, 2170–2176 (1992).
    [CrossRef]
  47. J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials (Thornes, 2001).
  48. S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
    [CrossRef]
  49. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
    [CrossRef]
  50. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
    [CrossRef]
  51. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
    [CrossRef]
  52. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16, 17039–17051(2008).
    [CrossRef] [PubMed]
  53. N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006).
    [CrossRef]
  54. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
    [CrossRef]
  55. C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
    [CrossRef] [PubMed]
  56. C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
    [CrossRef]
  57. S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
    [CrossRef]
  58. B. L. Deopura, A. K. Sengupta, and A. Verma, “Effect of moisture on physical properties of nylon,” Polym. Commun. 24, 287–288 (1983).
  59. M. Tajvidi and G. Ebrahimi, “Water uptake and mechanical characteristics of natural filler-polypropylene composites,” J. Appl. Polym. Sci. 88, 941–946 (2003).
    [CrossRef]
  60. C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010).
    [CrossRef]
  61. M. A. Salhi, I. Pupeza, and M. Koch, “Confocal THz laser microscope,” J. Infrared Milli. Terahz. Waves 31, 358–366(2009).
    [CrossRef]
  62. C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
    [CrossRef] [PubMed]
  63. M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
    [CrossRef] [PubMed]

2010

C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010).
[CrossRef]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

2009

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
[CrossRef] [PubMed]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
[CrossRef] [PubMed]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

M. A. Salhi, I. Pupeza, and M. Koch, “Confocal THz laser microscope,” J. Infrared Milli. Terahz. Waves 31, 358–366(2009).
[CrossRef]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
[CrossRef] [PubMed]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100 μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282, 1304–1306 (2009).
[CrossRef]

2008

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008).
[CrossRef]

L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
[CrossRef]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008).
[CrossRef] [PubMed]

A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47, 3254–3257 (2008).
[CrossRef] [PubMed]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008).
[CrossRef] [PubMed]

C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16, 17039–17051(2008).
[CrossRef] [PubMed]

B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Terahertz line detection by a microlens array coupled photoconductive antenna array,” Opt. Express 16, 18443–18450 (2008).
[CrossRef] [PubMed]

2007

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

B. Pradarutti, R. Müller, G. Matthäus, C. Brückner, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Multichannel balanced electro-optic detection for terahertz imaging,” Opt. Express 15, 17652–17660 (2007).
[CrossRef] [PubMed]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

2006

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
[CrossRef]

N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006).
[CrossRef]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

2005

A. W. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
[CrossRef] [PubMed]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301(2005).
[CrossRef]

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

H. Eisele, M. Naftaly, and R. Kamoua, “Generation of submillimeter-wave radiation with GaAs TUNNETT diodes and InP Gunn devices in a second or higher harmonic mode,” Int. J. Infrared Millim. Waves 26, 1–14 (2005).
[CrossRef]

N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005).
[CrossRef]

2003

P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003).
[CrossRef]

M. Tajvidi and G. Ebrahimi, “Water uptake and mechanical characteristics of natural filler-polypropylene composites,” J. Appl. Polym. Sci. 88, 941–946 (2003).
[CrossRef]

A. Hirata, M. Harada, and T. Nagatsuma, “120 GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21, 2145–2153 (2003).
[CrossRef]

2002

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[CrossRef]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

2000

M. Herrmann, M. Tani, and K. Sakai, “Display modes in time-resolved terahertz imaging,” Jpn. J. Appl. Phys. 39, 6254–6258 (2000).
[CrossRef]

1998

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

1997

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997).
[CrossRef]

1996

A. Nahata, A. S. Weling, and Tony F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996).
[CrossRef]

1995

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

1994

V. A. Bershtein and V. A. Ryzhov, “Far infrared spectroscopy of polymers,” Adv. Polym. Sci. 114, 42–121 (1994).

1992

G. Rotter and H. Ishida, “Dynamic mechanical analysis of the glass transition: curve resolving applied to polymers,” Macromolecules 25, 2170–2176 (1992).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electro. Waves Appl. 6, 85–106 (1992).
[CrossRef]

1991

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972–1974 (1991).
[CrossRef]

1990

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

1983

T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
[CrossRef]

B. L. Deopura, A. K. Sengupta, and A. Verma, “Effect of moisture on physical properties of nylon,” Polym. Commun. 24, 287–288 (1983).

Asada, M.

N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005).
[CrossRef]

Auston, D. H.

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electro. Waves Appl. 6, 85–106 (1992).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Baaske, K.

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

Baker, C.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Bandyopadhyay, A.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
[CrossRef]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Bastian, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

Baudrit, B.

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

Bershtein, V. A.

V. A. Bershtein and V. A. Ryzhov, “Far infrared spectroscopy of polymers,” Adv. Polym. Sci. 114, 42–121 (1994).

Biermann, K.

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Blackshire, J. L.

Bohn, M. J.

Böttcher, J.

Bowden, B. F.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
[CrossRef]

Bradley, I. V.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Breitenstein, B.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
[CrossRef] [PubMed]

Breitfeld, F.

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Brückner, C.

Bruston, J.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Calawa, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Castro-Camus, E.

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301(2005).
[CrossRef]

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Chatterjee, S.

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Cowie, J. M. G.

J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials (Thornes, 2001).

Davies, A. G.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Dawes, D.

N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006).
[CrossRef]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Deopura, B. L.

B. L. Deopura, A. K. Sengupta, and A. Verma, “Effect of moisture on physical properties of nylon,” Polym. Commun. 24, 287–288 (1983).

Dinatale, W. F.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Dobbertin, T.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Duerr, E. K.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Ebrahimi, G.

M. Tajvidi and G. Ebrahimi, “Water uptake and mechanical characteristics of natural filler-polypropylene composites,” J. Appl. Polym. Sci. 88, 941–946 (2003).
[CrossRef]

Eisele, H.

H. Eisele, M. Naftaly, and R. Kamoua, “Generation of submillimeter-wave radiation with GaAs TUNNETT diodes and InP Gunn devices in a second or higher harmonic mode,” Int. J. Infrared Millim. Waves 26, 1–14 (2005).
[CrossRef]

Evans, M. J.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Federici, J. F.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
[CrossRef]

Freese, W.

Fung, A.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Gallot, G.

Goodhue, W.

T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
[CrossRef]

Gregory, I. S.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Grischkowsky, D.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972–1974 (1991).
[CrossRef]

Hangyo, M.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997).
[CrossRef]

Harada, M.

Harrington, J. A.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
[CrossRef]

Hasek, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Hattori, S.

N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005).
[CrossRef]

Heinz, Tony F.

A. Nahata, A. S. Weling, and Tony F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Herrmann, M.

M. Herrmann, M. Tani, and K. Sakai, “Display modes in time-resolved terahertz imaging,” Jpn. J. Appl. Phys. 39, 6254–6258 (2000).
[CrossRef]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Hirata, A.

Hochrein, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

Holzwarth, R.

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Hu, B. B.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Hu, Q.

Hwang, J.-S.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

Ishida, H.

G. Rotter and H. Ishida, “Dynamic mechanical analysis of the glass transition: curve resolving applied to polymers,” Macromolecules 25, 2170–2176 (1992).
[CrossRef]

Jacobsen, R. H.

Jansen, C.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100 μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282, 1304–1306 (2009).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Jepsen, P. U.

Johnston, M. B.

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301(2005).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Jördens, C.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010).
[CrossRef]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
[CrossRef] [PubMed]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
[CrossRef] [PubMed]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

Jung, T.

Kammoun, A.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Kamoua, R.

H. Eisele, M. Naftaly, and R. Kamoua, “Generation of submillimeter-wave radiation with GaAs TUNNETT diodes and InP Gunn devices in a second or higher harmonic mode,” Int. J. Infrared Millim. Waves 26, 1–14 (2005).
[CrossRef]

Karpowicz, N.

L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
[CrossRef]

N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006).
[CrossRef]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Keiding, S. R.

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Kleine-Ostmann, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

Knobloch, P.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Koch, M.

C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010).
[CrossRef]

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
[CrossRef] [PubMed]

M. A. Salhi, I. Pupeza, and M. Koch, “Confocal THz laser microscope,” J. Infrared Milli. Terahz. Waves 31, 358–366(2009).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100 μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282, 1304–1306 (2009).
[CrossRef]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
[CrossRef] [PubMed]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
[CrossRef] [PubMed]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008).
[CrossRef] [PubMed]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Kozma, I. Z.

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Kretschmer, K.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Krumbholz, N.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

Kuenzel, H.

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Künzel, H.

Kurabayashi, T.

P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003).
[CrossRef]

Kürner, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

Lee, A. W.

Lin, K.-I.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

Linfield, E. H.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301(2005).
[CrossRef]

Maestrini, A.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Maiwald, F.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Makabe, H.

P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003).
[CrossRef]

Martin, S.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Mathoted, V. B. F.

V. B. F. Mathoted, Calorimetry and Thermal Analysis of Polymers (Hanser, 1994).

Matsuura, S.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997).
[CrossRef]

Matthäus, G.

McIntosh, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Mehdi, I.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Mei, M.

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Mikulics, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
[CrossRef] [PubMed]

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008).
[CrossRef] [PubMed]

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Missous, M.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Mittleman, D.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Molvar, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Müller, R.

Naftaly, M.

H. Eisele, M. Naftaly, and R. Kamoua, “Generation of submillimeter-wave radiation with GaAs TUNNETT diodes and InP Gunn devices in a second or higher harmonic mode,” Int. J. Infrared Millim. Waves 26, 1–14 (2005).
[CrossRef]

Nagatsuma, T.

Nahata, A.

A. Nahata, A. S. Weling, and Tony F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Nakamura, B.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

Nishizawa, J.

P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003).
[CrossRef]

Nolte, S.

Notni, G.

Orihashi, N.

N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005).
[CrossRef]

Parker, C. D.

T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
[CrossRef]

Peck, D. D.

T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
[CrossRef]

Perry, M. J.

N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006).
[CrossRef]

Piesiewicz, R.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

Plotka, P.

P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003).
[CrossRef]

Podzorov, A.

Pradarutti, B.

Pupeza, I.

M. A. Salhi, I. Pupeza, and M. Koch, “Confocal THz laser microscope,” J. Infrared Milli. Terahz. Waves 31, 358–366(2009).
[CrossRef]

Ralph, S. E.

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972–1974 (1991).
[CrossRef]

Redo-Sanchez, A.

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008).
[CrossRef]

Reisecker, V.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

Reuter, M.

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Riehemann, S.

Roehle, H.

Romeike, D.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

Rotter, G.

G. Rotter and H. Ishida, “Dynamic mechanical analysis of the glass transition: curve resolving applied to polymers,” Macromolecules 25, 2170–2176 (1992).
[CrossRef]

Rutz, F.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Ryzhov, V. A.

V. A. Bershtein and V. A. Ryzhov, “Far infrared spectroscopy of polymers,” Adv. Polym. Sci. 114, 42–121 (1994).

Sakai, K.

M. Herrmann, M. Tani, and K. Sakai, “Display modes in time-resolved terahertz imaging,” Jpn. J. Appl. Phys. 39, 6254–6258 (2000).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997).
[CrossRef]

Salhi, M. A.

M. A. Salhi, I. Pupeza, and M. Koch, “Confocal THz laser microscope,” J. Infrared Milli. Terahz. Waves 31, 358–366(2009).
[CrossRef]

Sartorius, B.

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express 16, 9565–9570 (2008).
[CrossRef] [PubMed]

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Schell, M.

Scheller, M.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010).
[CrossRef]

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100 μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282, 1304–1306 (2009).
[CrossRef]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17, 17723–17733 (2009).
[CrossRef] [PubMed]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
[CrossRef] [PubMed]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
[CrossRef] [PubMed]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

Schlak, M.

Schlecht, E.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Schöbel, J.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

Selmar, D.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
[CrossRef] [PubMed]

Sengupta, A.

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
[CrossRef]

Sengupta, A. K.

B. L. Deopura, A. K. Sengupta, and A. Verma, “Effect of moisture on physical properties of nylon,” Polym. Commun. 24, 287–288 (1983).

Siegel, P.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[CrossRef]

Smith, P.

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

Smith, P. R.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

Sollner, T.

T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
[CrossRef]

Stanze, D.

Stoik, C. D.

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005).
[CrossRef]

Suzuki, S.

N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005).
[CrossRef]

Tajvidi, M.

M. Tajvidi and G. Ebrahimi, “Water uptake and mechanical characteristics of natural filler-polypropylene composites,” J. Appl. Polym. Sci. 88, 941–946 (2003).
[CrossRef]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

Tani, M.

M. Herrmann, M. Tani, and K. Sakai, “Display modes in time-resolved terahertz imaging,” Jpn. J. Appl. Phys. 39, 6254–6258 (2000).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997).
[CrossRef]

Tannenwald, P.

T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005).
[CrossRef]

Tribe, W. R.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

Tünnermann, A.

Turchinovich, D.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Venghaus, H.

Verghese, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

Verma, A.

B. L. Deopura, A. K. Sengupta, and A. Verma, “Effect of moisture on physical properties of nylon,” Polym. Commun. 24, 287–288 (1983).

Vieweg, N.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and Tony F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Wichmann, M.

Wiesauer, K.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48, 2037–2044 (2009).
[CrossRef] [PubMed]

Wietzke, S.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010).
[CrossRef]

S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Wilk, R.

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

R. Wilk, F. Breitfeld, M. Mikulics, and M. Koch, “Continuous wave terahertz spectrometer as a noncontact thickness measuring device,” Appl. Opt. 47, 3023–3026 (2008).
[CrossRef] [PubMed]

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

Wu, Q.

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Xu, J.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
[CrossRef]

Zentgraf, T.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

Zhang, C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Zhang, C.-L.

L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
[CrossRef]

Zhang, L.-L.

L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
[CrossRef]

Zhang, X.-C.

L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
[CrossRef]

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008).
[CrossRef]

N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006).
[CrossRef]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electro. Waves Appl. 6, 85–106 (1992).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
[CrossRef]

Zhao, Y.-J.

L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
[CrossRef]

Zhong, H.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

Adv. Polym. Sci.

V. A. Bershtein and V. A. Ryzhov, “Far infrared spectroscopy of polymers,” Adv. Polym. Sci. 114, 42–121 (1994).

Appl. Opt.

Appl. Phys. A

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Appl. Phys. Lett.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
[CrossRef]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).
[CrossRef]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 285–287 (1995).
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506–508 (1990).
[CrossRef]

A. Nahata, A. S. Weling, and Tony F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

T. Sollner, W. Goodhue, P. Tannenwald, C. D. Parker, and D. D. Peck, “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl. Phys. Lett. 43, 588–590 (1983).
[CrossRef]

S. E. Ralph and D. Grischkowsky, “Trap-enhanced electric fields in semi-insulators: the role of electrical and optical carrier injection,” Appl. Phys. Lett. 59, 1972–1974 (1991).
[CrossRef]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Compos. Sci. Technol.

C. Jördens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, and M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010).
[CrossRef]

Electron. Lett.

N. Orihashi, S. Hattori, S. Suzuki, and M. Asada, “Voltage-controlled sub-terahertz oscillation of resonant tunnelling diode integrated with slot antenna,” Electron. Lett. 41, 872–874 (2005).
[CrossRef]

A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, “Characterisation of olefin copolymers using terahertz spectroscopy,” Electron. Lett. 42, 1477–1479 (2006).
[CrossRef]

IEEE Antennas Propag. Mag.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel, and T. Kürner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007).
[CrossRef]

IEEE J. Quantum Electron.

I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave terahertz emission,” IEEE J. Quantum Electron. 41, 717–728 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Redo-Sanchez and X.-C. Zhang, “Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260–269 (2008).
[CrossRef]

IEEE Microwave Guided Wave Lett.

M. Tani, S. Matsuura, K. Sakai, and M. Hangyo, “Multiple-frequency generation of sub-terahertz radiation by multimode ld excitation of photoconductive antenna,” IEEE Microwave Guided Wave Lett. 7, 282–284 (1997).
[CrossRef]

IEEE Trans. Electron. Devices

P. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, “240–325 ghz GaAs cw fundamental-mode TUNNETT diodes fabricated with molecular layer epitaxy,” IEEE Trans. Electron. Devices 50, 867–873 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[CrossRef]

Int. J. Infrared Millim. Waves

H. Eisele, M. Naftaly, and R. Kamoua, “Generation of submillimeter-wave radiation with GaAs TUNNETT diodes and InP Gunn devices in a second or higher harmonic mode,” Int. J. Infrared Millim. Waves 26, 1–14 (2005).
[CrossRef]

J. Appl. Polym. Sci.

M. Tajvidi and G. Ebrahimi, “Water uptake and mechanical characteristics of natural filler-polypropylene composites,” J. Appl. Polym. Sci. 88, 941–946 (2003).
[CrossRef]

J. Biol. Phys.

C. Jördens, M. Scheller, B. Breitenstein, D. Selmar, and M. Koch, “Evaluation of the leaf water status by means of the permittivity at terahertz frequencies,” J. Biol. Phys. 35, 255–264 (2009).
[CrossRef] [PubMed]

J. Electro. Waves Appl.

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electro. Waves Appl. 6, 85–106 (1992).
[CrossRef]

J. Eur. Opt. Soc. Rap. Public.

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Public. 2, 07013 (2007).
[CrossRef]

J. Infrared Milli. Terahz. Waves

M. A. Salhi, I. Pupeza, and M. Koch, “Confocal THz laser microscope,” J. Infrared Milli. Terahz. Waves 31, 358–366(2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

M. Herrmann, M. Tani, and K. Sakai, “Display modes in time-resolved terahertz imaging,” Jpn. J. Appl. Phys. 39, 6254–6258 (2000).
[CrossRef]

Macromolecules

G. Rotter and H. Ishida, “Dynamic mechanical analysis of the glass transition: curve resolving applied to polymers,” Macromolecules 25, 2170–2176 (1992).
[CrossRef]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Opt. Commun.

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100 μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282, 1304–1306 (2009).
[CrossRef]

L.-L. Zhang, N. Karpowicz, C.-L. Zhang, Y.-J. Zhao, and X.-C. Zhang, “Real-time nondestructive imaging with THz waves,” Opt. Commun. 281, 1473–1475 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Optik & Photonik

C. Jansen, T. Hochrein, R. Wilk, S. Wietzke, M. Scheller, N. Krumbholz, C. Jördens, K. Baaske, and M. Koch, “Applications for THz systems,” Optik & Photonik 4, 26–30 (2008).
[CrossRef]

Phys. Rev. B

E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, “Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches,” Phys. Rev. B 71, 195301(2005).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Polym. Commun.

B. L. Deopura, A. K. Sengupta, and A. Verma, “Effect of moisture on physical properties of nylon,” Polym. Commun. 24, 287–288 (1983).

Polym. Test.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

C. Jördens, S. Wietzke, M. Scheller, and M. Koch, “Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy,” Polym. Test. 29, 209–215 (2010).
[CrossRef]

Proc. SPIE

N. Karpowicz, D. Dawes, M. J. Perry, and X.-C. Zhang, “Fire damage on carbon fiber materials characterized by THz waves,” Proc. SPIE 621262120G (2006).
[CrossRef]

Rep. Prog. Phys.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Semicond. Sci. Technol.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293–S299 (2005).
[CrossRef]

Other

R. Wilk, M. Mikulics, K. Biermann, H. Kuenzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz time-domain spectrometer based on LT-InGaAs photoconductive antennas exited by a 1.55 μm fibre laser,” in Proceedings of the Conference on Lasers and Electro-Optics 2007 (IEEE, 2007), pp. 1–2

D.Mittleman, ed., Sensing with Terahertz Radiation(Springer-Verlag, 2003).

V. B. F. Mathoted, Calorimetry and Thermal Analysis of Polymers (Hanser, 1994).

K.Sakai, ed., Terahertz Optoelectronics (Springer, 2005).
[CrossRef]

S. Martin, B. Nakamura, A. Fung, P. Smith, J. Bruston, A. Maestrini, F. Maiwald, P. Siegel, E. Schlecht, and I. Mehdi, “Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes,” in IEEE MTT-S Microwave Symposium Digest (IEEE, 2001), Vol.  1, pp. 1641–1644 .

X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
[CrossRef]

J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials (Thornes, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of a pulsed (upper figure) and a cw (lower figure) THz system. (b) Photograph of a fiber-coupled THz TDS system for industrial applications [21].

Fig. 2
Fig. 2

Different parameters for the visualization of THz images based on (a) THz pulses and (b) the corresponding spectra.

Fig. 3
Fig. 3

Images of drilled holes in a plastic sample: (a) photography, (b) peak-to-peak THz-image, and (c) integrated intensity in the range of 0.2 to 0.3 THz .

Fig. 4
Fig. 4

(a) Volume-temperature diagram of a polymer and (b) temperature-dependent refractive index of POM at 1.5 THz observed with THz time-domain spectroscopy [the gray area in (b) denotes the glass transition temperature range identified by DSC measurements].

Fig. 5
Fig. 5

(a) Inline terahertz measurements on polypropylene melt with a varying content of Ca CO 3 performed at the end of an extruder and (b) compact THz probe for inline process control.

Fig. 6
Fig. 6

(a) Index ellipsoid of a birefringent medium and (b) simulated fiber orientation tensor (false shaded image) according to the software Moldflow Plastic Insight of an injection molded polyamide specimen reinforced by 30   wt . % short glass fibers.

Fig. 7
Fig. 7

(a) Backlit photograph (left) and THz image (right) of a sample contaminated with sand, (b) backlit photograph (upper) and THz image (lower) of a delaminated sample, and (c) future application scenario of a THz NDT plastic weld joint inspection system.

Fig. 8
Fig. 8

(a) Photograph and (b) spatially resolved THz image of the water content inside a WPC plate ( 60 wt . % wood fibers).

Fig. 9
Fig. 9

(a) THz image of a leaf obtained in a cw system with a confocal configuration, (b) THz transmission through a single point of the leaf as a function of the volumetric water content, and (c) a future vision of a mobile plant hydration monitoring THz TDS system.

Fig. 10
Fig. 10

(a) THz image of a chocolate bar contaminated with a buried glass splinter and (b) vision of a future THz quality inspection system for food products [21].

Metrics