Abstract

Far-infrared outdoor imagery has a lower contrast in the morning/afternoon relative to the highest contrast, which is observed at 14:00. Millimeter-wave (mmW) imagery can also follow this pattern. However, in this paper, we show that the opposite can occur for mmW imagery, wherein a higher contrast can occur in the morning/afternoon and lower contrast at 14:00. To this end, we show that a wood and rubber sample are observed to have a difference in mmW radiometric temperature of 17°C at 9:00 and a difference of only 7°C at 14:00. Details of our observations are presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
    [CrossRef]
  2. D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
    [CrossRef]
  3. G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
    [CrossRef]
  4. C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
    [CrossRef]
  5. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Addison-Wesley, 1981), Vol.  1.
  6. E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
    [CrossRef]
  7. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362, 379–392 (2004).
    [CrossRef] [PubMed]
  8. H. J. Liebe, “MPM—an atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650(1989).
    [CrossRef]
  9. J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
    [CrossRef]
  10. C. M. Bhumralkar, “Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model,” J. Appl. Meteor. 14, 1246–1258(1975).
    [CrossRef]
  11. A. K. Blackadar, “Modeling the nocturnal boundary layer,” in Preprints of Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality (American Meteorological Society, 1976), pp. 46–49.
  12. F. M. Gottsche and F. S. Olesen, “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data,” Remote Sens. Environ. 76, 337–348 (2001).
    [CrossRef]
  13. K. Watson, “Geologic applications of thermal infrared images,” Proc. IEEE 63, 128–137 (1975).
    [CrossRef]
  14. J. B. Campbell, Introduction to Remote Sensing, 4th ed.(Guildford, 2008).
  15. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
    [CrossRef]
  16. S. J. P. Retief, C. J. Willers, and M. S. Wheeler, “Prediction of thermal crossover based on imaging measurements over the diurnal cycle,” Proc. SPIE 5097, 58–69 (2003).
    [CrossRef]
  17. F. J. Janza, “Interaction mechanisms,” in Manual of Remote SensingR.G.Reeves, ed. (American Society of Photogrammetry, 1975), pp. 75–179.
  18. C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005).
    [CrossRef]

2009

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

2007

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
[CrossRef]

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

2005

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005).
[CrossRef]

2004

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362, 379–392 (2004).
[CrossRef] [PubMed]

2003

S. J. P. Retief, C. J. Willers, and M. S. Wheeler, “Prediction of thermal crossover based on imaging measurements over the diurnal cycle,” Proc. SPIE 5097, 58–69 (2003).
[CrossRef]

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

2001

F. M. Gottsche and F. S. Olesen, “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data,” Remote Sens. Environ. 76, 337–348 (2001).
[CrossRef]

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

1996

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

1990

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

1989

H. J. Liebe, “MPM—an atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650(1989).
[CrossRef]

1975

C. M. Bhumralkar, “Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model,” J. Appl. Meteor. 14, 1246–1258(1975).
[CrossRef]

K. Watson, “Geologic applications of thermal infrared images,” Proc. IEEE 63, 128–137 (1975).
[CrossRef]

Appleby, R.

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362, 379–392 (2004).
[CrossRef] [PubMed]

Bhumralkar, C. M.

C. M. Bhumralkar, “Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model,” J. Appl. Meteor. 14, 1246–1258(1975).
[CrossRef]

Bishop, M.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Blackadar, A. K.

A. K. Blackadar, “Modeling the nocturnal boundary layer,” in Preprints of Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality (American Meteorological Society, 1976), pp. 46–49.

Brooker, G.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Campbell, J. B.

J. B. Campbell, Introduction to Remote Sensing, 4th ed.(Guildford, 2008).

Cernicharo, J.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

Dillon, T. E.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Falls, M. J.

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

Fung, A. K.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Addison-Wesley, 1981), Vol.  1.

Gottsche, F. M.

F. M. Gottsche and F. S. Olesen, “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data,” Remote Sens. Environ. 76, 337–348 (2001).
[CrossRef]

Hennessey, R.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Janza, F. J.

F. J. Janza, “Interaction mechanisms,” in Manual of Remote SensingR.G.Reeves, ed. (American Society of Photogrammetry, 1975), pp. 75–179.

Lamb, J. W.

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

Liebe, H. J.

H. J. Liebe, “MPM—an atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650(1989).
[CrossRef]

Lobsey, C.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Mackrides, D.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Martin, R. D.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

Moore, R. K.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Addison-Wesley, 1981), Vol.  1.

Murakowski, J.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005).
[CrossRef]

Olesen, F. S.

F. M. Gottsche and F. S. Olesen, “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data,” Remote Sens. Environ. 76, 337–348 (2001).
[CrossRef]

Pardo, J. R.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

Prather, D. W.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005).
[CrossRef]

Retief, S. J. P.

S. J. P. Retief, C. J. Willers, and M. S. Wheeler, “Prediction of thermal crossover based on imaging measurements over the diurnal cycle,” Proc. SPIE 5097, 58–69 (2003).
[CrossRef]

Samluk, J.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Schneider, G. J.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005).
[CrossRef]

Schuetz, C. A.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005).
[CrossRef]

Serabyn, E.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

Snider, J. B.

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

Stein, E. L.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Ulaby, F. T.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Addison-Wesley, 1981), Vol.  1.

Watson, K.

K. Watson, “Geologic applications of thermal infrared images,” Proc. IEEE 63, 128–137 (1975).
[CrossRef]

Westwater, E. R.

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

Wheeler, M. S.

S. J. P. Retief, C. J. Willers, and M. S. Wheeler, “Prediction of thermal crossover based on imaging measurements over the diurnal cycle,” Proc. SPIE 5097, 58–69 (2003).
[CrossRef]

Widzyk-Capehart, E.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Wikner, D.

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
[CrossRef]

Willers, C. J.

S. J. P. Retief, C. J. Willers, and M. S. Wheeler, “Prediction of thermal crossover based on imaging measurements over the diurnal cycle,” Proc. SPIE 5097, 58–69 (2003).
[CrossRef]

Wilson, J. P.

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

IEEE Microw. Mag.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

IEEE Trans. Antennas Propag.

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90.0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microwave Theor. Tech. 53, 1732–1738 (2005).
[CrossRef]

Int. J. Infrared Millim. Waves

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

H. J. Liebe, “MPM—an atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650(1989).
[CrossRef]

J. Appl. Meteor.

C. M. Bhumralkar, “Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model,” J. Appl. Meteor. 14, 1246–1258(1975).
[CrossRef]

J. Field Robot.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Phil. Trans. R. Soc. A

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Phil. Trans. R. Soc. A 362, 379–392 (2004).
[CrossRef] [PubMed]

Proc. IEEE

K. Watson, “Geologic applications of thermal infrared images,” Proc. IEEE 63, 128–137 (1975).
[CrossRef]

Proc. SPIE

S. J. P. Retief, C. J. Willers, and M. S. Wheeler, “Prediction of thermal crossover based on imaging measurements over the diurnal cycle,” Proc. SPIE 5097, 58–69 (2003).
[CrossRef]

C. A. Schuetz, E. L. Stein, Jr., J. Samluk, D. Mackrides, J. P. Wilson, R. D. Martin, T. E. Dillon, and D. W. Prather, “Studies of millimeter-wave phenomenology for helicopter brownout mitigation,” Proc. SPIE 7485, 74850F (2009).
[CrossRef]

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
[CrossRef]

Remote Sens. Environ.

F. M. Gottsche and F. S. Olesen, “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data,” Remote Sens. Environ. 76, 337–348 (2001).
[CrossRef]

Other

J. B. Campbell, Introduction to Remote Sensing, 4th ed.(Guildford, 2008).

F. J. Janza, “Interaction mechanisms,” in Manual of Remote SensingR.G.Reeves, ed. (American Society of Photogrammetry, 1975), pp. 75–179.

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing (Addison-Wesley, 1981), Vol.  1.

A. K. Blackadar, “Modeling the nocturnal boundary layer,” in Preprints of Third Symposium on Atmospheric Turbulence, Diffusion and Air Quality (American Meteorological Society, 1976), pp. 46–49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Visual representation of model parameters.

Fig. 2
Fig. 2

Three simulated cases for temperature changes.

Fig. 3
Fig. 3

Simulated contrast changes for three cases.

Fig. 4
Fig. 4

Visual overview of experimental setup with wood, rubber, and metal targets visible.

Fig. 5
Fig. 5

(a) Kinetic, (b) IR, and (c) mmW data collected for rubber and wood objects during testing period.

Fig. 6
Fig. 6

Calculated contrast between wood and rubber objects.

Fig. 7
Fig. 7

Overview images at 9:00 and 14:00 local time for (a),(b) optical camera, (c),(d) mmW imager, and (e),(f) IR imager.

Fig. 8
Fig. 8

Comparison of simulation to experimental data: wood parameters, A = 12.3 and B = 8.9 ; rubber parameters, A = 9.1 and B = 17.0 .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T a ( θ , t ) = R ( θ ) T incident ( t ) + [ 1 R ( θ ) ] T obj ( t ) ,
T 1 ( t ) = T 0 + T amp sin ( π w t ) t < t s ,
T 2 ( t ) = ( T 0 + δ T ) + [ T amp sin ( π w t s ) δ T ] exp ( t t s k ) t t s .
k = w π T amp [ δ T sec ( π w t s ) T amp tan ( π w t s ) ] ,
P = ( K C ρ ) 1 / 2 ,
T a ( t ) = A + B sin ( π w t ) t < t s ,
A = R T incident + ( 1 R ) T 0 ,
B = ( 1 R ) T amp .

Metrics