Abstract

The properties of what is, to the best of our knowledge, the first ten-element polarization-dependent transmission trap detector consisting of silicon photodiodes are described. The responsivity and the transmittance of the photodetector were measured at laser wavelengths of 476.2 and 647.1nm. In particular, the effect of the polarization state of the incident radiation on the transmittance was determined. Differences in transmittance of an order of magnitude were observed between s and p polarization. These values were compared with theoretical values calculated using the Fresnel reflection formulas. The difference between the calculated and measured values was less than ±3×107. The spatial nonuniformity of the response was measured to be less than ±3×104. The transmittance was measured to be spatially uniform across a 5mm×5mm area of the trap detector aperture to within ±1.5×106 for s-polarized input and within ±1.5×107 for p-polarized input.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
    [CrossRef]
  2. E. F. Zalewski and C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873(1983).
    [CrossRef] [PubMed]
  3. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
    [CrossRef]
  4. B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
    [CrossRef]
  5. J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 33, 5914–5918 (1994).
    [CrossRef] [PubMed]
  6. J. L. Gardner, “A four-element transmission trap detector,” Metrologia 32, 469–472 (1995).
    [CrossRef]
  7. G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105(6), 813–828 (2000).
  8. Y. Ichino, T. Saito, and I. Saito, “Optical trap detector with large acceptance area,” J. Light & Vis. Environ. 32, 295–301 (2008).
    [CrossRef]
  9. T. Kübarsepp, P. Kärha, and E. Ikonen, “Characterization of a polarization-independent transmission trap detector,” Appl. Opt. 36, 2807–2812 (1997).
    [CrossRef] [PubMed]
  10. J. H. Lehman, D. Livigni, X. Li, C. L. Cromer, and M. L. Dowell, “Reflective attenuator for high-energy laser measurements,” Appl. Opt. 47, 3360–3363 (2008).
    [CrossRef] [PubMed]
  11. K. D. Stock and R. Heine, “Influence of vignetting errors on the relative spectral responsivity of trap detectors,” Metrologia 35, 447–450 (1998).
    [CrossRef]
  12. J. Mountford, G. Porrovecchio, M. Smid, and R. Smid, “Development of a switched integrator amplifier for high-accuracy optical measurements,” Appl. Opt. 47, 5821–5828 (2008).
    [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, 1965), pp. 40, 632–633.
  14. G. E. Jellison, Jr., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
    [CrossRef]
  15. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  16. Candela: Towards quantum photon-based standards, European Community’s Seventh Framework Programme, ERA-NET Plus, http://www.quantumcandela.net.

2008

2003

R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

2000

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105(6), 813–828 (2000).

1998

K. D. Stock and R. Heine, “Influence of vignetting errors on the relative spectral responsivity of trap detectors,” Metrologia 35, 447–450 (1998).
[CrossRef]

1997

1995

J. L. Gardner, “A four-element transmission trap detector,” Metrologia 32, 469–472 (1995).
[CrossRef]

1994

1993

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

1992

G. E. Jellison, Jr., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[CrossRef]

1991

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

1983

1965

Born, M.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, 1965), pp. 40, 632–633.

Cromer, C. L.

J. H. Lehman, D. Livigni, X. Li, C. L. Cromer, and M. L. Dowell, “Reflective attenuator for high-energy laser measurements,” Appl. Opt. 47, 3360–3363 (2008).
[CrossRef] [PubMed]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Cunningham, D.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Dezsi, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Dowell, M. L.

Duda, C. R.

Eppeldauer, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Eppeldauer, G. P.

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105(6), 813–828 (2000).

Fowler, J.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

Gardner, J. L.

J. L. Gardner, “A four-element transmission trap detector,” Metrologia 32, 469–472 (1995).
[CrossRef]

J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 33, 5914–5918 (1994).
[CrossRef] [PubMed]

Gullikson, E.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Heine, R.

K. D. Stock and R. Heine, “Influence of vignetting errors on the relative spectral responsivity of trap detectors,” Metrologia 35, 447–450 (1998).
[CrossRef]

Ichino, Y.

Y. Ichino, T. Saito, and I. Saito, “Optical trap detector with large acceptance area,” J. Light & Vis. Environ. 32, 295–301 (2008).
[CrossRef]

Ikonen, E.

Jellison, G. E.

G. E. Jellison, Jr., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[CrossRef]

Johnson, B. C.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Kärha, P.

Korde, R.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Kübarsepp, T.

Lehman, J. H.

Li, X.

Livigni, D.

Lynch, D. C.

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105(6), 813–828 (2000).

Malitson, I. H.

Mountford, J.

Porrovecchio, G.

Prince, C.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Saito, I.

Y. Ichino, T. Saito, and I. Saito, “Optical trap detector with large acceptance area,” J. Light & Vis. Environ. 32, 295–301 (2008).
[CrossRef]

Saito, T.

Y. Ichino, T. Saito, and I. Saito, “Optical trap detector with large acceptance area,” J. Light & Vis. Environ. 32, 295–301 (2008).
[CrossRef]

Sapritsky, V. I.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Saunders, R. D.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Smid, M.

Smid, R.

Stock, K. D.

K. D. Stock and R. Heine, “Influence of vignetting errors on the relative spectral responsivity of trap detectors,” Metrologia 35, 447–450 (1998).
[CrossRef]

Vest, R. E.

R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, 1965), pp. 40, 632–633.

Zalewski, E. F.

Appl. Opt.

J. Light & Vis. Environ.

Y. Ichino, T. Saito, and I. Saito, “Optical trap detector with large acceptance area,” J. Light & Vis. Environ. 32, 295–301 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Res. Natl. Inst. Stand. Technol.

G. P. Eppeldauer and D. C. Lynch, “Opto-mechanical and electronic design of a tunnel-trap Si-radiometer,” J. Res. Natl. Inst. Stand. Technol. 105(6), 813–828 (2000).

Metrologia

K. D. Stock and R. Heine, “Influence of vignetting errors on the relative spectral responsivity of trap detectors,” Metrologia 35, 447–450 (1998).
[CrossRef]

R. Korde, C. Prince, D. Cunningham, R. E. Vest, and E. Gullikson, “Present status of radiometric quality silicon photodiodes,” Metrologia 40, S145–S149 (2003).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, and G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

J. L. Gardner, “A four-element transmission trap detector,” Metrologia 32, 469–472 (1995).
[CrossRef]

Opt. Mater.

G. E. Jellison, Jr., “Optical functions of silicon determined by two-channel polarization modulation ellipsometry,” Opt. Mater. 1, 41–47 (1992).
[CrossRef]

Other

Candela: Towards quantum photon-based standards, European Community’s Seventh Framework Programme, ERA-NET Plus, http://www.quantumcandela.net.

M. Born and E. Wolf, Principles of Optics, 3rd ed. (Pergamon, 1965), pp. 40, 632–633.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principal layout of photodiodes in the ten-element transmission trap detector. The arrowed line represents the beam path within the device. The dotted line indicates the optical axis of the transmission trap detector.

Fig. 2
Fig. 2

Schematic layout of the measurement set-up: SF, spatial filter; EOM, electro-optical modulator; FD, feedback detector; ID, iris diaphragm; BS, beam splitter; MON, monitor detector; TT, ten-element transmission trap detector; RF, reference detector.

Fig. 3
Fig. 3

Measured and calculated transmittances of the ten- element photodetector. The open squares depict measurement results of s-polarized light at wavelengths of 476.2 and 647.1 nm ; the solid circles illustrate measurement results of p-polarized light at wavelengths of 476.2 and 647.1 nm . The dotted curve and the solid curve represent the calculated spectral transmittance for s- polarized and p-polarized laser radiation, respectively.

Fig. 4
Fig. 4

Spatial variations of responsivity (in percent) of the ten-element trap detector measured by using laser wavelength of 647.1 nm . The input beam was polarized in (a) the s plane and (b) the p plane. The diameter of the central circle is about 6 mm . The bold line illustrates the whole active area of the photodetector.

Fig. 5
Fig. 5

Spatial uniformity of the transmittance of the ten-element trap detector measured with a 647.1 nm laser wavelength. The input beam was polarized in (a) the s plane and (b) the p plane. The beam diameter was 0.7 mm .

Tables (2)

Tables Icon

Table 1 Comparison of the Measured and Calculated Transmittance of the Ten-Element Trap at Two Wavelengths and at Two Polarization States of the Incoming Light

Tables Icon

Table 2 Measured Ratios of Photocurrent between the Ten-Element and Three-Element Photodetectors and the Responsivity of the Ten-Photodiode Trap Detector at Two Laser Wavelengths

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T 10 m , i ( λ ) = i s b , i ( λ ) i s d , i ( λ ) ,
T 10 c , s ( λ ) = [ ρ s ( λ ) × ρ p ( λ ) ] 3 × ρ s ( λ ) 4 ,
T 10 c , p ( λ ) = [ ρ s ( λ ) × ρ p ( λ ) ] 3 × ρ p ( λ ) 4 ,
R 10 ( λ ) = i 10 ( λ ) i 3 ( λ ) × R 3 ( λ ) ,

Metrics