Abstract

Converting a Gaussian to a flat-top beam is useful for many applications including laser-launched thin-foil flyer plates. A flat-top beam is needed to maintain a constant launch velocity across the flyer; otherwise, the flyer can disintegrate in flight. Here we discuss and demonstrate the use of a variable reflectivity mirror (VRM) with a Gaussian reflectivity profile with an additional hard aperture and compare it to a refractive beam shaper. An ideal VRM would generate a flat-top beam with 37% efficiency. Readily available high-power Gaussian or super-Gaussian mirrors create an approximate flat-top profile, but there is a trade-off between flatness and efficiency. We show that a super-Gaussian mirror can, in principle, convert an input Gaussian beam with 30% efficiency to a flat-top beam with 3% (maximum-to- minimum) variation. With a Gaussian mirror and a high-energy pulsed Nd:YAG laser having relatively poor beam quality, we generate flat-top beams with 25% conversion efficiency having 6% variation (standard deviation σ=4.2%). The beams are used to launch 400μm diameter, 25μm thick Al flyer plates, whose flight was monitored by a high-speed displacement interferometer. The plates flew across a 300μm gap at 1.3km/s. The distribution of arrival times at the witness plate was 5ns, as determined by the rise time of the impact emission. Compared to a total flight time of 260ns, the velocity spread of different parts of the flyer plate was 2%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).
  2. H. Kiriyama, M. Michiaki, Y. Nakai, T. Shimomura, H. Sasao, M. Tanaka, Y. Ochi, M. Tanoue, H. Okada, S. Kondo, S. Kanazawa, A. Sagisaka, I. Daito, D. Wakai, F. Sasao, M. Suzuki, H. Kotakai, K. Kondo, A. Sugiyama, S. Bulanov, P. R. Bolton, H. Daido, S. Kawanishi, J. L. Collier, C. Hernandez-Gomez, C. J. Hooker, K. Ertel, T. Kimura, and T. Tajima, "High-spatiotemporal-quality petawatt-class laser system," Appl. Opt. 49, 2105–2115 (2010).
    [CrossRef] [PubMed]
  3. M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003).
    [CrossRef]
  4. W. M. Trott, R. E. Setchell, and A. V. Farnsworth, Jr., “Development of laser-driven flyer techniques for equation-of-state studies of microscale materials,” AIP Conf. Proc. 620, 1347–1350 (2002).
  5. K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
    [CrossRef]
  6. W. M. Trott, “Investigation of the dynamic behavior of laser-driven flyers,” in High-Pressure Science and Technology, S.C.Schmidt, J.W.Shaner, G.A.Samara, and M.Ross, eds. (American Institute of Physics, 1993), pp. 1655–1658.
  7. R. J. Lawrence and W. M. Trott, “Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher,” Int. J. Impact Eng. 14, 439–449 (1993).
    [CrossRef]
  8. S. Watson and J. E. Field, “Integrity of thin, laser-driven flyer plates,” J. Appl. Phys. 88, 3859–3864 (2000).
    [CrossRef]
  9. T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
    [CrossRef]
  10. D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008).
    [CrossRef] [PubMed]
  11. T. H. Bett, C. N. Danson, P. Jinks, D. A. Pepler, I. N. Ross, and R. M. Stevenson, “Binary phase zone-plate arrays for laser-beam spatial-intensity distribution conversion,” Appl. Opt. 34, 4025–4036 (1995).
    [CrossRef] [PubMed]
  12. H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100J level green laser beam homogenization to pump a petawatt class Ti:sapphire chirped-pulse amplification laser system,” Rev. Laser Eng. 37, 467–469 (2009).
  13. N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
    [CrossRef]
  14. D. C. Swift, “Simulations of laser-launched flyers,” Los Alamos Report LA-UR-04-6946, Los Alamos National Laboratory, Los Alamos, NM, 2004.
  15. M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
    [CrossRef]
  16. J. A. Hoffnagle and C. M. Jefferson, “Beam shaping with a plano-aspheric lens pair,” Opt. Eng. 42, 3090–3099 (2003).
    [CrossRef]
  17. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39, 5488–5499 (2000).
    [CrossRef]
  18. D. J. Armstrong and A. V. Smith, “Using a Newport refractive beam shaper to generate high-quality flat-top spatial profiles from a flashlamp-pumped commercial Nd:YAG laser,” Proc. SPIE 5525, 88–97 (2004).
    [CrossRef]
  19. C. W. Miller, H. Kishimura, S. C. Kelly, and N. N. Thadhani, “Laser-driven miniflyer system for shock compression studies,” AIP Conf. Proc. 1195, 1147–1150 (2009).
  20. M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002).
    [CrossRef]
  21. W. M. Trott and K. D. Meeks, “High-power Nd:Glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
    [CrossRef]
  22. S. P. Chang, J.-M. Kuo, Y.-P. Lee, C.-M. Lu, and K.-J. Ling, “Transformation of Gaussian to coherent uniform beams by inverse-Gaussian transmittive filters,” Appl. Opt. 37, 747–752(1998).
    [CrossRef]
  23. J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
    [CrossRef] [PubMed]
  24. A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
    [CrossRef] [PubMed]
  25. H. Fujiwara, K. E. Brown, and D. Dlott, “Laser-driven flyer plates for reactive materials research,” AIP Conf. Proc. 1195, 1317–1320 (2010).

2009 (1)

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100J level green laser beam homogenization to pump a petawatt class Ti:sapphire chirped-pulse amplification laser system,” Rev. Laser Eng. 37, 467–469 (2009).

2008 (2)

D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008).
[CrossRef] [PubMed]

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

2007 (1)

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

2006 (1)

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

2004 (1)

D. J. Armstrong and A. V. Smith, “Using a Newport refractive beam shaper to generate high-quality flat-top spatial profiles from a flashlamp-pumped commercial Nd:YAG laser,” Proc. SPIE 5525, 88–97 (2004).
[CrossRef]

2003 (3)

J. A. Hoffnagle and C. M. Jefferson, “Beam shaping with a plano-aspheric lens pair,” Opt. Eng. 42, 3090–3099 (2003).
[CrossRef]

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003).
[CrossRef]

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

2002 (1)

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002).
[CrossRef]

2000 (3)

J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39, 5488–5499 (2000).
[CrossRef]

S. Watson and J. E. Field, “Integrity of thin, laser-driven flyer plates,” J. Appl. Phys. 88, 3859–3864 (2000).
[CrossRef]

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

1998 (1)

1995 (1)

1994 (1)

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

1993 (1)

R. J. Lawrence and W. M. Trott, “Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher,” Int. J. Impact Eng. 14, 439–449 (1993).
[CrossRef]

1990 (1)

W. M. Trott and K. D. Meeks, “High-power Nd:Glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Armstrong, D. J.

D. J. Armstrong and A. V. Smith, “Using a Newport refractive beam shaper to generate high-quality flat-top spatial profiles from a flashlamp-pumped commercial Nd:YAG laser,” Proc. SPIE 5525, 88–97 (2004).
[CrossRef]

Batani, D.

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

Benuzzi, A.

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

Benuzzi-Mounaix, A.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Bett, T. H.

Bolton, P.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100J level green laser beam homogenization to pump a petawatt class Ti:sapphire chirped-pulse amplification laser system,” Rev. Laser Eng. 37, 467–469 (2009).

Bolton, P. R.

Bossi, S.

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

Boudenne, J. M.

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

Brown, K. E.

H. Fujiwara, K. E. Brown, and D. Dlott, “Laser-driven flyer plates for reactive materials research,” AIP Conf. Proc. 1195, 1317–1320 (2010).

Bucholtz, S.

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

Bulanov, S.

Cai, L.

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

Chang, S. P.

Clarke, S. A.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

Collier, J. L.

Daido, H.

Daito, I.

Danson, C. N.

Dlott, D.

H. Fujiwara, K. E. Brown, and D. Dlott, “Laser-driven flyer plates for reactive materials research,” AIP Conf. Proc. 1195, 1317–1320 (2010).

Ertel, K.

Esposito, M.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Faral, B.

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

Farnsworth, A. V.

W. M. Trott, R. E. Setchell, and A. V. Farnsworth, Jr., “Development of laser-driven flyer techniques for equation-of-state studies of microscale materials,” AIP Conf. Proc. 620, 1347–1350 (2002).

Field, J. E.

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003).
[CrossRef]

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002).
[CrossRef]

S. Watson and J. E. Field, “Integrity of thin, laser-driven flyer plates,” J. Appl. Phys. 88, 3859–3864 (2000).
[CrossRef]

Fujiwara, H.

H. Fujiwara, K. E. Brown, and D. Dlott, “Laser-driven flyer plates for reactive materials research,” AIP Conf. Proc. 1195, 1317–1320 (2010).

Gehr, R. J.

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

Goveas, S. G.

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003).
[CrossRef]

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002).
[CrossRef]

Greenaway, M. W.

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003).
[CrossRef]

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002).
[CrossRef]

Greenfield, S. R.

D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008).
[CrossRef] [PubMed]

Hara, M.

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Henry, E.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Hernandez-Gomez, C.

Hoffnagle, J. A.

Hooker, C. J.

Hüser, G.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Jefferson, C. M.

Jinks, P.

Johnson, R. P.

D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).

Kanazawa, S.

Kawanishi, S.

Kelly, S. C.

C. W. Miller, H. Kishimura, S. C. Kelly, and N. N. Thadhani, “Laser-driven miniflyer system for shock compression studies,” AIP Conf. Proc. 1195, 1147–1150 (2009).

Kimura, T.

Kiriyama, H.

Kishimura, H.

C. W. Miller, H. Kishimura, S. C. Kelly, and N. N. Thadhani, “Laser-driven miniflyer system for shock compression studies,” AIP Conf. Proc. 1195, 1147–1150 (2009).

Koenig, M.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

Kondo, K.

Kondo, S.

Kopp, R. A.

D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).

Koskelo, A. C.

D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008).
[CrossRef] [PubMed]

Kotakai, H.

Kuo, J.-M.

Kyrala, G. A.

D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).

Lawrence, R. J.

R. J. Lawrence and W. M. Trott, “Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher,” Int. J. Impact Eng. 14, 439–449 (1993).
[CrossRef]

Lee, Y.-P.

Lepape, S.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Li, J.

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

Ling, K.-J.

Liu, C.

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

Lu, C.-M.

Luo, S.-N.

D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008).
[CrossRef] [PubMed]

Ma, Y.

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

Meeks, K. D.

W. M. Trott and K. D. Meeks, “High-power Nd:Glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

Michiaki, M.

Miller, C. W.

C. W. Miller, H. Kishimura, S. C. Kelly, and N. N. Thadhani, “Laser-driven miniflyer system for shock compression studies,” AIP Conf. Proc. 1195, 1147–1150 (2009).

Mima, K.

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Mori, M.

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100J level green laser beam homogenization to pump a petawatt class Ti:sapphire chirped-pulse amplification laser system,” Rev. Laser Eng. 37, 467–469 (2009).

Nagai, K.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Nakai, Y.

Nakano, M.

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Nazarov, W.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Nishihara, K.

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Ochi, Y.

Okada, H.

Ozaki, N.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Paisley, D. L.

D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008).
[CrossRef] [PubMed]

D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).

Pepler, D. A.

Proud, W. G.

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003).
[CrossRef]

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002).
[CrossRef]

Ravasio, A.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Robbins, D. L.

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

Rodriguez, G.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

Ross, I. N.

Rupp, T. D.

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

Sagisaka, A.

Sasao, F.

Sasao, H.

Sasatani, Y.

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Setchell, R. E.

W. M. Trott, R. E. Setchell, and A. V. Farnsworth, Jr., “Development of laser-driven flyer techniques for equation-of-state studies of microscale materials,” AIP Conf. Proc. 620, 1347–1350 (2002).

Sheffield, S. A.

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

Shimomura, T.

Smith, A. V.

D. J. Armstrong and A. V. Smith, “Using a Newport refractive beam shaper to generate high-quality flat-top spatial profiles from a flashlamp-pumped commercial Nd:YAG laser,” Proc. SPIE 5525, 88–97 (2004).
[CrossRef]

Stahl, D. B.

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

Stevenson, R. M.

Sugiyama, A.

Suzuki, M.

Swift, D. C.

D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).

D. C. Swift, “Simulations of laser-launched flyers,” Los Alamos Report LA-UR-04-6946, Los Alamos National Laboratory, Los Alamos, NM, 2004.

Tajima, T.

Takenaka, H.

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Tan, H.

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

Tanaka, K. A.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Tanaka, M.

Tanoue, M.

Thadhani, N. N.

C. W. Miller, H. Kishimura, S. C. Kelly, and N. N. Thadhani, “Laser-driven miniflyer system for shock compression studies,” AIP Conf. Proc. 1195, 1147–1150 (2009).

Thomas, K. A.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

Trott, W. M.

R. J. Lawrence and W. M. Trott, “Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher,” Int. J. Impact Eng. 14, 439–449 (1993).
[CrossRef]

W. M. Trott and K. D. Meeks, “High-power Nd:Glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

W. M. Trott, “Investigation of the dynamic behavior of laser-driven flyers,” in High-Pressure Science and Technology, S.C.Schmidt, J.W.Shaner, G.A.Samara, and M.Ross, eds. (American Institute of Physics, 1993), pp. 1655–1658.

W. M. Trott, R. E. Setchell, and A. V. Farnsworth, Jr., “Development of laser-driven flyer techniques for equation-of-state studies of microscale materials,” AIP Conf. Proc. 620, 1347–1350 (2002).

Valenzuela, A. R.

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

Vinci, T.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Wakai, D.

Wang, X. X.

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

Watson, S.

S. Watson and J. E. Field, “Integrity of thin, laser-driven flyer plates,” J. Appl. Phys. 88, 3859–3864 (2000).
[CrossRef]

Weng, J.

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

Yoshida, M.

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Appl. Opt. (4)

Int. J. Impact Eng. (2)

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “A laser-accelerated flyer system,” Int. J. Impact Eng. 29, 317–321 (2003).
[CrossRef]

R. J. Lawrence and W. M. Trott, “Theoretical analysis of a pulsed-laser-driven hypervelocity flyer launcher,” Int. J. Impact Eng. 14, 439–449 (1993).
[CrossRef]

J. Appl. Phys. (2)

S. Watson and J. E. Field, “Integrity of thin, laser-driven flyer plates,” J. Appl. Phys. 88, 3859–3864 (2000).
[CrossRef]

W. M. Trott and K. D. Meeks, “High-power Nd:Glass laser transmission through optical fibers and its use in acceleration of thin foil targets,” J. Appl. Phys. 67, 3297–3301 (1990).
[CrossRef]

J. Phys. IV (1)

N. Ozaki, M. Koenig, A. Benuzzi-Mounaix, T. Vinci, A. Ravasio, M. Esposito, S. Lepape, E. Henry, G. Hüser, K. A. Tanaka, W. Nazarov, K. Nagai, and M. Yoshida, “Laser-driven flyer impact experiments at the LULI 2000 laser facility,” J. Phys. IV 133, 1101–1105 (2006).
[CrossRef]

Opt. Eng. (1)

J. A. Hoffnagle and C. M. Jefferson, “Beam shaping with a plano-aspheric lens pair,” Opt. Eng. 42, 3090–3099 (2003).
[CrossRef]

Phys. Plasmas (1)

K. A. Tanaka, M. Hara, N. Ozaki, Y. Sasatani, K. Kondo, M. Nakano, K. Nishihara, H. Takenaka, M. Yoshida, and K. Mima, “Multi-layered flyer accelerated by laser induced shock waves,” Phys. Plasmas 7, 676–680 (2000).
[CrossRef]

Phys. Rev. E (1)

M. Koenig, B. Faral, J. M. Boudenne, D. Batani, A. Benuzzi, and S. Bossi, “Optical smoothing techniques for shock wave generation in laser-produced plasmas,” Phys. Rev. E 50, R3314–R3317 (1994).
[CrossRef]

Proc. SPIE (1)

D. J. Armstrong and A. V. Smith, “Using a Newport refractive beam shaper to generate high-quality flat-top spatial profiles from a flashlamp-pumped commercial Nd:YAG laser,” Proc. SPIE 5525, 88–97 (2004).
[CrossRef]

Rev. Laser Eng. (1)

H. Kiriyama, M. Tanaka, Y. Ochi, Y. Nakai, H. Sasao, H. Okada, M. Mori, T. Shimomura, S. Kanazawa, H. Daido, P. Bolton, and S. Kawanishi, “100J level green laser beam homogenization to pump a petawatt class Ti:sapphire chirped-pulse amplification laser system,” Rev. Laser Eng. 37, 467–469 (2009).

Rev. Sci. Instrum. (5)

T. D. Rupp, R. J. Gehr, S. Bucholtz, D. L. Robbins, D. B. Stahl, and S. A. Sheffield, “Stereo camera system for three-dimensional reconstruction of a flyer plate in flight,” Rev. Sci. Instrum. 74, 5274–5281 (2003).
[CrossRef]

D. L. Paisley, S.-N. Luo, S. R. Greenfield, and A. C. Koskelo, “Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications,” Rev. Sci. Instrum. 79, 023902 (2008).
[CrossRef] [PubMed]

M. W. Greenaway, W. G. Proud, J. E. Field, and S. G. Goveas, “The development and study of a fiber delivery system for beam shaping,” Rev. Sci. Instrum. 73, 2185–2189 (2002).
[CrossRef]

J. Weng, X. X. Wang, Y. Ma, H. Tan, L. Cai, J. Li, and C. Liu, “A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser,” Rev. Sci. Instrum. 79, 113101 (2008).
[CrossRef] [PubMed]

A. R. Valenzuela, G. Rodriguez, S. A. Clarke, and K. A. Thomas, “Photonic Doppler velocimetry of laser-ablated ultrathin metals,” Rev. Sci. Instrum. 78, 013101 (2007).
[CrossRef] [PubMed]

Other (6)

H. Fujiwara, K. E. Brown, and D. Dlott, “Laser-driven flyer plates for reactive materials research,” AIP Conf. Proc. 1195, 1317–1320 (2010).

W. M. Trott, “Investigation of the dynamic behavior of laser-driven flyers,” in High-Pressure Science and Technology, S.C.Schmidt, J.W.Shaner, G.A.Samara, and M.Ross, eds. (American Institute of Physics, 1993), pp. 1655–1658.

W. M. Trott, R. E. Setchell, and A. V. Farnsworth, Jr., “Development of laser-driven flyer techniques for equation-of-state studies of microscale materials,” AIP Conf. Proc. 620, 1347–1350 (2002).

D. C. Swift, “Simulations of laser-launched flyers,” Los Alamos Report LA-UR-04-6946, Los Alamos National Laboratory, Los Alamos, NM, 2004.

C. W. Miller, H. Kishimura, S. C. Kelly, and N. N. Thadhani, “Laser-driven miniflyer system for shock compression studies,” AIP Conf. Proc. 1195, 1147–1150 (2009).

D. L. Paisley, D. C. Swift, R. P. Johnson, R. A. Kopp, and G. A. Kyrala, “Laser-launched flyer plates and direct laser shocks for dynamic material property measurements,” AIP Conf. Proc. 620, 1343–1346 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Three methods to generate a flat-top pulse from an input with a Gaussian radial profile. (a) An aperture selects the central part of the pulse. The aperture is imaged onto the target with demagnification. (b) A refractive beam shaper (π shaper) is used. A zoom lens before the π shaper optimizes the incident beam diameter, and the output beam is imaged onto the target with demagnification. (c) A VRM with a Gaussian or super-Gaussian radial reflectivity profile M ( R ) is used. A zoom lens optimizes the incident beam diameter. A hard aperture is used to clip the beam edges.

Fig. 2
Fig. 2

Profiles resulting from different methods of producing flat-top beams from an incident Gaussian. The white region is the portion of the beam profile that is transmitted and the gray region is the part blocked by a hard aperture. (a) The central region of a beam’s Gaussian profile is selected by an aperture only. (b) An aperture is combined with an optimal VRM, giving the maximum possible transmission efficiency ζ = 37 % . (c) An aperture is combined with a Gaussian mirror that depresses the intensity of the beam center. (d) An aperture and a super-Gaussian mirror with n = 3 produces two depressions in the beam profile so the aperture can be opened up to transmit more energy.

Fig. 3
Fig. 3

Flattening an input Gaussian beam using a Gaussian mirror and aperture. The variation F (peak to minimum intensity) of the flat-top beam, when the input beam diameter is optimized, is plotted as a function of the reflectivity maximum R f at the center of a Gaussian mirror for given efficiencies ζ = E out / E in . For a chosen efficiency, the plot shows the minimum obtainable variation F and the needed Gaussian mirror reflectivity.

Fig. 4
Fig. 4

Flattening an input Gaussian beam using a Gaussian mirror and aperture. This plot shows how to adjust the ratio r m / r 0 , where r m is the Gaussian mirror reflectivity radius and r 0 is the incident Gaussian beam radius, to obtain the minimum variation F at a given value of efficiency ζ.

Fig. 5
Fig. 5

Generating a flat-top beam with an aperture alone (without mirror), Gaussian ( n = 2 ), or super-Gaussian ( n = 3 5 ) mirror. The plot shows the minimum obtainable variation F at a given value of efficiency ζ.

Fig. 6
Fig. 6

Schematic of experimental apparatus for laser flyer launch. The Nd:YAG laser is sent along a multipass delay to allow the beam profile to improve by diffraction. Zoom lenses before and after the beam shaper (π shaper or Gaussian mirror plus aperture) were used to optimize the incident beam diameter and increase the intensity at the target. The target consisted of a glass substrate, a metal foil, a spacer, and a witness plate (a glass window). The DISAR is an all-fiber displacement interferometer that recorded the velocity history of the launch.

Fig. 7
Fig. 7

Block diagram of the 8 GHz DISAR. A 10 × microscope objective was used to collect light reflected or scattered from the laser-launched flyer plate moving toward the objective.

Fig. 8
Fig. 8

Images of high-energy laser beam using the π-shaper refractive optic: (a) 1 m from the laser output coupler and (b) after 30 m propagation, at the entrance of the π shaper. (c) Flat-top beam output from the π shaper imaged to 3 mm diameter. The standard deviation of fluence is σ = 0.11 .

Fig. 9
Fig. 9

Images of high-energy laser beam using a Gaussian mirror and an aperture: (a) 1 m from the laser output coupler, (b) at the Gaussian mirror 30 m from the laser output coupler, and (c) immediately after the Gaussian mirror. (d) Flat-top beam output using a Gaussian mirror with aperture, after reducing to 2 mm diameter. The standard deviation of fluence is σ = 0.04 .

Fig. 10
Fig. 10

Radially averaged flat-top beam profiles obtained using the (a) π shaper and (b) Gaussian mirror. The maximum-to- minimum variation F = 0.28 with the π shaper and F = 0.06 with the Gaussian mirror.

Fig. 11
Fig. 11

(a) Photo of the target, consisting of 25 μm Al foil glued to a glass window. (b) Microscope photo of recovered flyer plate. (c) Microscope photo of witness plate after flyer impact. (d) Interferogram from the DISAR. The high-speed oscillations result from flyer motion. Modulation of the intensity envelope results from reflectivity changes caused by nonuniformity of the drive laser pulses. (e) Moving-window Fourier transform gives the velocity history, including the 10 ns acceleration to 1.3 km s 1 and the abrupt deceleration upon impact. (f) Time-dependence of drive laser pulse and impact emission. The emission is time shifted by about 250 ns . The 5 ns rise time of the impact emission is attributed to a 5 ns spread of arrival times of the flyer at the witness plate.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J in ( r ) = J in ( 0 ) exp ( 2 r 2 r 0 2 ) ,
J out ( r ) = { J in ( 0 ) exp ( 2 r 2 r 0 2 ) r R 0 r > R .
M id ( r ) = 1 exp ( 1 + 2 r 2 r 0 2 ) , 0 r 2 1 / 2 r 0 ; M id ( r ) = 1 , r > 2 1 / 2 r 0 .
M ( 2 ) ( r ; R f , r m ) = R f exp [ 2 ( r r m ) 2 ] ,
J out ( 2 ) ( r ; R f , r m ) = J in ( r ) [ 1 M ( 2 ) ( r ; R f , r m ) ] = J in ( 0 ) exp ( 2 r 2 r 0 2 ) [ 1 R f exp ( 2 ( r r m ) 2 ) ] .
M ( n ) ( r ; R f , r m ) = R f exp ( 2 ( r r m ) n ) .
J out ( n ) ( r ; R f , r m ) = J in ( r ) [ 1 M ( n ) ( r ; R f , r m ) ] = J in ( 0 ) exp ( 2 r 2 r 0 2 ) [ 1 R f exp ( 2 ( r r 0 ) n ) ] .

Metrics