Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra

Not Accessible

Your library or personal account may give you access

Abstract

We present a sophisticated radiative transfer code for modeling outgoing IR radiation from planetary atmospheres and, conversely, for retrieving atmospheric properties from high-resolution nadir-observed spectra. The forward model is built around a doubling-adding routine and calculates, in a spherical refractive geometry, the outgoing radiation emitted by the Earth and the atmosphere containing one layer of aerosol. The inverse model uses an optimal estimation approach and can simultaneously retrieve atmospheric trace gases, aerosol effective radius, and concentration. It is different from existing codes, as most forward codes dealing with multiple scattering assume a plane-parallel atmosphere, and as for the retrieval, it does not rely on precalculated spectra, the use of microwindows, or two-step retrievals. The simultaneous retrieval on a broad spectral range exploits the full potential of current state-of-the-art hyperspectral IR sounders, such as AIRS and IASI, and should be particularly useful in studying major pollution events. We present five example retrievals of IASI spectra observed in the range from 800 to 1200cm1 above dust, volcanic ash, sulfuric acid, ice particles, and biomass burning aerosols.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans

Ziauddin Ahmad, Bryan A. Franz, Charles R. McClain, Ewa J. Kwiatkowska, Jeremy Werdell, Eric P. Shettle, and Brent N. Holben
Appl. Opt. 49(29) 5545-5560 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved