Abstract

Novel nanocomposites consisting of a water-soluble acrylamide-based photopolymer and colloidal zeolite nanoparticles of zeolite Beta and zeolite A were prepared. The interactions between the photopolymer components and zeolite nanoparticles in the photopolymerizable nanocomposites were characterized for the first time by C13 nuclear magnetic resonance and visible spectroscopy. It was found that the zeolite Beta nanoparticles (up to 5 wt. %) behave as a noninert additive, resulting in an effective increase in layer thickness, which causes doubling of the diffraction efficiency of the nanocomposite in comparison to that of the undoped photopolymer. On the other hand, the nanocomposite containing zeolite A nanoparticles showed no evidence of interaction with the polymer matrix, had similar values of diffraction efficiency, and—up to a small addition of nanoparticles (up to 2.5 wt. %)—showed slightly higher light-induced refractive index modulation of the grating when compared to the undoped photopolymer. The good optical compatibility between the zeolite nanoparticles and the polymer allows a versatile design of photopolymerizable nanocomposites with different properties by selecting the adequate type of zeolite. The nanocomposite containing zeolite Beta nanoparticles demonstrates selective sensing be havior toward toluene and can be coated in either glass or plastic substrates and exposed directly to the environmental conditions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991).
    [CrossRef]
  2. S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
    [CrossRef] [PubMed]
  3. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
    [CrossRef]
  4. P. Cheben and M. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
    [CrossRef]
  5. F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
    [CrossRef]
  6. Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
    [CrossRef]
  7. C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
    [CrossRef]
  8. O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
    [CrossRef]
  9. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404nm,” Appl. Phys. 107, 023107(2010).
    [CrossRef]
  10. O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
    [CrossRef]
  11. S. Piazzolla and B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [CrossRef]
  12. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
    [CrossRef]
  13. Y. Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications,” SPIE Newsroom: Micro/ Nano Lithography & Fabrication (2007).
    [CrossRef]
  14. L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
    [CrossRef]
  15. C. Baerlocher, L. McCusker, and D. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007).
  16. A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, 1988).
  17. E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
    [CrossRef]
  18. I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications,” in Ordered Porous Solids: Recent Advances and Prospects, V.Valtchev, S.Mintova, and M.Tsapatsis, eds. (Elsevier, 2008).
  19. S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chem. Mater. 13, 901–905 (2001).
    [CrossRef]
  20. S. Mintova and T. Bein, “Nanosized zeolite films for vapor-sensing applications,” Meso. Mater. 50, 159–166 (2001).
    [CrossRef]
  21. Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
    [CrossRef]
  22. N. Burke, D. Trimma, and R. Howe, “The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control,” Appl. Cat. B Environ. 46, 97–104 (2003).
    [CrossRef]
  23. S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
    [CrossRef]
  24. S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
    [CrossRef]
  25. S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999).
    [CrossRef] [PubMed]
  26. B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
    [CrossRef]
  27. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  28. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed. (Wiley-VCH, 2003).
  29. M. Rauf, A. Soliman, and M. Khattab, “Solvent effect on the spectral properties of Neutral Red,” Chem. Central J. 2, 19 (2008).
    [CrossRef]
  30. S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
    [CrossRef]
  31. V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
    [CrossRef]

2010 (2)

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404nm,” Appl. Phys. 107, 023107(2010).
[CrossRef]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

2009 (1)

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

2008 (3)

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

M. Rauf, A. Soliman, and M. Khattab, “Solvent effect on the spectral properties of Neutral Red,” Chem. Central J. 2, 19 (2008).
[CrossRef]

2007 (2)

O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
[CrossRef]

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

2006 (2)

F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

2005 (4)

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

2003 (3)

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

N. Burke, D. Trimma, and R. Howe, “The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control,” Appl. Cat. B Environ. 46, 97–104 (2003).
[CrossRef]

S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
[CrossRef]

2001 (3)

S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chem. Mater. 13, 901–905 (2001).
[CrossRef]

S. Mintova and T. Bein, “Nanosized zeolite films for vapor-sensing applications,” Meso. Mater. 50, 159–166 (2001).
[CrossRef]

P. Cheben and M. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

2000 (1)

1999 (1)

S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999).
[CrossRef] [PubMed]

1998 (1)

S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
[CrossRef]

1994 (1)

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

1991 (1)

W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Babeva, T.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

Baerlocher, C.

C. Baerlocher, L. McCusker, and D. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007).

Bastiaansen, C.

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Bein, T.

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
[CrossRef]

S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chem. Mater. 13, 901–905 (2001).
[CrossRef]

S. Mintova and T. Bein, “Nanosized zeolite films for vapor-sensing applications,” Meso. Mater. 50, 159–166 (2001).
[CrossRef]

S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999).
[CrossRef] [PubMed]

Blyth, J.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Broer, D.

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Bunning, T.

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

Burke, N.

N. Burke, D. Trimma, and R. Howe, “The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control,” Appl. Cat. B Environ. 46, 97–104 (2003).
[CrossRef]

Calvo, M.

O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
[CrossRef]

F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
[CrossRef]

P. Cheben and M. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Cartwright, A.

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

Cheben, P.

O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
[CrossRef]

F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
[CrossRef]

P. Cheben and M. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Chechik, V.

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

Chen, F.

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

Del Monte, F.

O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
[CrossRef]

F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
[CrossRef]

Domschke, A.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Dyer, A.

A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, 1988).

Escuti, M.

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Faust, A.-C.

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

Fujitsuka, M.

S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
[CrossRef]

Gambogi, W.

W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991).
[CrossRef]

Gao, X.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Gerstadt, W.

W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991).
[CrossRef]

Goldenberg, L.

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Han, D.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Heesh, C.

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Helliwell, P.

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

Howe, R.

N. Burke, D. Trimma, and R. Howe, “The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control,” Appl. Cat. B Environ. 46, 97–104 (2003).
[CrossRef]

Hsiao, V.

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

Hussain, A.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Islam, S.

S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
[CrossRef]

Ito, O.

S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
[CrossRef]

James, K.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Jenkins, B.

Kabilan, S.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Karangu, N.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Khattab, M.

M. Rauf, A. Soliman, and M. Khattab, “Solvent effect on the spectral properties of Neutral Red,” Chem. Central J. 2, 19 (2008).
[CrossRef]

Kirkey, W.

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Leclere, P.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Lee, M.-C.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Leite, E.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

Lion, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Loos, J.

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Lowe, C.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Mackara, S.

W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991).
[CrossRef]

Mackey, D.

Majano, G.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

Marshall, A.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Martin, S.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Martinez, O.

F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
[CrossRef]

Martínez-Matos, O.

O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
[CrossRef]

McCusker, L.

C. Baerlocher, L. McCusker, and D. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007).

Metzger, T.

S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
[CrossRef]

Mihailovab, B.

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

Mintova, S.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
[CrossRef]

S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chem. Mater. 13, 901–905 (2001).
[CrossRef]

S. Mintova and T. Bein, “Nanosized zeolite films for vapor-sensing applications,” Meso. Mater. 50, 159–166 (2001).
[CrossRef]

S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999).
[CrossRef] [PubMed]

Mo, S.

S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chem. Mater. 13, 901–905 (2001).
[CrossRef]

Naydenova, I.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications,” in Ordered Porous Solids: Recent Advances and Prospects, V.Valtchev, S.Mintova, and M.Tsapatsis, eds. (Elsevier, 2008).

Nishibiraki, H.

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

Nussbaumer, R.

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Olson, D.

C. Baerlocher, L. McCusker, and D. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007).

Olson, N.

S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999).
[CrossRef] [PubMed]

Omura, K.

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404nm,” Appl. Phys. 107, 023107(2010).
[CrossRef]

Pandey, N.

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

Petkov, N.

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

Piazzolla, S.

Prasad, P.

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

Rauf, M.

M. Rauf, A. Soliman, and M. Khattab, “Solvent effect on the spectral properties of Neutral Red,” Chem. Central J. 2, 19 (2008).
[CrossRef]

Reichardt, C.

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed. (Wiley-VCH, 2003).

Reinelt, M.

S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
[CrossRef]

Renotte, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Rodrigo, J.

O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
[CrossRef]

F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
[CrossRef]

Sakhno, O.

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Sanchez, C.

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Sartain, F.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Senkera, J.

S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
[CrossRef]

Sherif, H.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

Smirnova, T.

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Smith, D.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Soliman, A.

M. Rauf, A. Soliman, and M. Khattab, “Solvent effect on the spectral properties of Neutral Red,” Chem. Central J. 2, 19 (2008).
[CrossRef]

Stumpe, J.

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Su, Q.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Toal, V.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications,” in Ordered Porous Solids: Recent Advances and Prospects, V.Valtchev, S.Mintova, and M.Tsapatsis, eds. (Elsevier, 2008).

Tomita, Y.

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404nm,” Appl. Phys. 107, 023107(2010).
[CrossRef]

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

Y. Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications,” SPIE Newsroom: Micro/ Nano Lithography & Fabrication (2007).
[CrossRef]

Trimma, D.

N. Burke, D. Trimma, and R. Howe, “The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control,” Appl. Cat. B Environ. 46, 97–104 (2003).
[CrossRef]

Valtchev, V.

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999).
[CrossRef] [PubMed]

Wang, H.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Wang, Z.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Watanabe, A.

S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
[CrossRef]

Weber, A.

W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991).
[CrossRef]

Xin, Y.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Yang, X.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Yang, Y.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Yoshikawa, Y.

S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
[CrossRef]

Zeng, J.

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Zhang, Z.

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Adv. Funct. Mater. (1)

C. Sanchez, M. Escuti, C. Heesh, C. Bastiaansen, D. Broer, J. Loos, and R. Nussbaumer, “TiO2 nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater. 15, 1623–1629 (2005).
[CrossRef]

Adv. Mater. (2)

V. Hsiao, W. Kirkey, F. Chen, A. Cartwright, P. Prasad, and T. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Adv. Mater. 17, 2211–2214(2005).
[CrossRef]

F. Del Monte, O. Martinez, J. Rodrigo, M. Calvo, and P. Cheben, “A volume holographic sol-gel material with large enhancement of dynamic range by incorporation of high refractive index species,” Adv. Mater. 18, 2014–2017 (2006).
[CrossRef]

Appl. Cat. B Environ. (1)

N. Burke, D. Trimma, and R. Howe, “The effect of silica:alumina ratio and hydrothermal ageing on the adsorption characteristics of BEA zeolites for cold start emission control,” Appl. Cat. B Environ. 46, 97–104 (2003).
[CrossRef]

Appl. Phys. (1)

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2 nanoparticle-polymer composites at 404nm,” Appl. Phys. 107, 023107(2010).
[CrossRef]

Appl. Phys. Lett. (3)

O. Martínez-Matos, M. Calvo, J. Rodrigo, P. Cheben, and F. Del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91, 141115 (2007).
[CrossRef]

Y. Tomita and H. Nishibiraki, “Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes,” Appl. Phys. Lett. 83, 410–412 (2003).
[CrossRef]

P. Cheben and M. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490–1492 (2001).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Biosens. Bioelectron. (1)

S. Kabilan, A. Marshall, F. Sartain, M.-C. Lee, A. Hussain, X. Yang, J. Blyth, N. Karangu, K. James, J. Zeng, D. Smith, A. Domschke, and C. Lowe, “Holographic glucose sensors,” Biosens. Bioelectron. 20, 1602–1610 (2005).
[CrossRef] [PubMed]

Bull. Chem. Soc. Jpn. (1)

S. Islam, Y. Yoshikawa, M. Fujitsuka, A. Watanabe, and O. Ito, “Studies on photochemical processes of xanthene dyes by means of the transient absorption spectra in the visible/near-IR regions,” Bull. Chem. Soc. Jpn. 71, 1543–1548 (1998).
[CrossRef]

Chem. Central J. (1)

M. Rauf, A. Soliman, and M. Khattab, “Solvent effect on the spectral properties of Neutral Red,” Chem. Central J. 2, 19 (2008).
[CrossRef]

Chem. Commun. (1)

S. Mintova, M. Reinelt, T. Metzger, J. Senkera, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chem. Commun. 3, 326–327 (2003).
[CrossRef]

Chem. Eng. Technol. (1)

Y. Zhang, Q. Su, Z. Wang, Y. Yang, Y. Xin, D. Han, X. Yang, H. Wang, X. Gao, and Z. Zhang “Synthesis and toluene adsorption/desorption property of Beta zeolite coated on cordierite honeycomb by an in situ crystallization method,” Chem. Eng. Technol. 31, 1856–1862 (2008).
[CrossRef]

Chem. Mater. (2)

S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chem. Mater. 13, 901–905 (2001).
[CrossRef]

L. Goldenberg, O. Sakhno, T. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20, 4619–4627 (2008).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

E. Leite, I. Naydenova, N. Pandey, T. Babeva, G. Majano, S. Mintova, and V. Toal, “Investigation of the light induced redistribution of zeolite Beta nanoparticles in an acrylamide-based photopolymer,” J. Opt. A Pure Appl. Opt. 11, 024016 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Meso. Mater. (1)

S. Mintova and T. Bein, “Nanosized zeolite films for vapor-sensing applications,” Meso. Mater. 50, 159–166 (2001).
[CrossRef]

Nanotechnology (1)

O. Sakhno, L. Goldenberg, J. Stumpe, and T. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18, 105704 (2007).
[CrossRef]

Opt. Eng. (1)

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterisation of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3946 (1994).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

B. Mihailovab, V. Valtchev, S. Mintova, A.-C. Faust, N. Petkov, and T. Bein, “Interlayer stacking disorder in zeolite beta family: a Raman spectroscopic study,” Phys. Chem. Chem. Phys. 7, 2756–2763 (2005).
[CrossRef]

Proc. SPIE (2)

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE 6252, 625206 (2006).
[CrossRef]

W. Gambogi, W. Gerstadt, S. Mackara, and A. Weber, “Holographic transmission elements using improved photopolymer films,” Proc. SPIE 1555, 256 (1991).
[CrossRef]

Science (1)

S. Mintova, N. Olson, V. Valtchev, and T. Bein, “Mechanism of zeolite A nanocrystal growth from colloids at room temperature,” Science 283, 958–960 (1999).
[CrossRef] [PubMed]

Other (5)

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed. (Wiley-VCH, 2003).

Y. Tomita, “Holographic assembly of nanoparticles in photopolymers for photonic applications,” SPIE Newsroom: Micro/ Nano Lithography & Fabrication (2007).
[CrossRef]

I. Naydenova and V. Toal, “Nanoparticle doped photopolymers for holographic applications,” in Ordered Porous Solids: Recent Advances and Prospects, V.Valtchev, S.Mintova, and M.Tsapatsis, eds. (Elsevier, 2008).

C. Baerlocher, L. McCusker, and D. Olson, Atlas of Zeolite Framework Types (Elsevier, 2007).

A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SEM pictures of (a) zeolite Beta and (b) zeolite A nanoparticles.

Fig. 2
Fig. 2

DLS curves (number weighted) of pure zeolite suspensions (black), acrylamide-based photopolymer and zeolite nanoparticles freshly mixed (gray), and after 24 h at ambient conditions (gray with stars).

Fig. 3
Fig. 3

(a) SEM of the acrylamide-based photopolymer layer ( 50 μm thickness) doped with Beta nanoparticles ( 5 wt. % ); the scale bar is 50 μm . (b) Optically transparent film of acrylamide-based photopolymer doped with zeolite A nanoparticles ( 5 wt. % ).

Fig. 4
Fig. 4

Holographic properties of zeolite nanocomposites: (a) thickness of layers, (b) diffraction efficiency, and (c) refractive index modulation. Gratings recorded at 1000 l mm 1 , exposure energy of 600 mJ cm 2 , and using 20% PVA solution.

Fig. 5
Fig. 5

Refractive index modulation of acrylamide-based photopolymer nanocomposites containing nanoparticles of (a) zeolite Beta and (b) zeolite A. The layers were prepared with PVA stock solutions with a concentration of 5, 10, and 20 w t . % PVA.

Fig. 6
Fig. 6

(a) Visible absorption spectra of erythrosine B in water (black), aqueous solution of zeolite A (light gray), and aqueous solution of zeolite Beta (dark gray). (b) Change in the position of the absorption maximum in aqueous solutions containing erythrosine B and zeolite Beta or A when compared to aqueous solution in the presence of acrylamide—AA, TEA, and PVA.

Fig. 7
Fig. 7

C 13 NMR spectra of acrylamide-based photopolymer containing (a) zeolite Beta and (b) zeolite A nanoparticles: 1, undoped acrylamide-based photopolymer; 2, zeolite-doped photopolymer (outside grating); 3, zeolite-doped photopolymer (inside grating). Spatial frequency 1000 l mm 1 and recording energy of 600 mJ cm 2 .

Fig. 8
Fig. 8

Angular selectivity curves measured before and after exposure to toluene ( 19 ppm ) for the highest change in the diffraction efficiency observed: (a) undoped photopolymer; (b) photopolymer containing Beta nanoparticles.

Fig. 9
Fig. 9

Change in diffraction efficiency of a grating exposed to toluene for Beta photopolymerizable nanocomposite (triangles) and undoped acrylamide-based photopolymer (circles).

Tables (2)

Tables Icon

Table 1 Compositions Used for Preparations of Photopolymerizable Nanocomposite (NC) Layers

Tables Icon

Table 2 Composition of Photopolymerizable Layers a Prepared with Different Concentrations of Matrix Components b

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 1 = λ cos θ arcsin η π d ,
η = sin 2 ( n 1 π d λ cos θ ) .
Δ η = sin ( 2 n 1 π d λ ) π cos θ λ [ d Δ n 1 + n 1 Δ d ( n 1 d λ ) Δ λ ] ,

Metrics