M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain 45, doi: 10.1111/j.1475–1305.2009.00625x (2009) and references therein.

[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng. 47, 768–773 (2009).

[CrossRef]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

B. Chen and C. Basaran, “Automatic full strain field moiré interferometry measurement with nano-scale resolution,” Exp. Mech. 48, 665–673 (2008).

[CrossRef]

M. Li, C. Quan, and C. Tai, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40, 920–929 (2008).

[CrossRef]

S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369–3377 (2008).

[CrossRef]
[PubMed]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison,” J. Phys. Conf. Ser. 76, 012045(2007).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).

[CrossRef]
[PubMed]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt. 46, 4613–4624 (2007).

[CrossRef]
[PubMed]

K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng. 45, 085602 (2006).

[CrossRef]

C.-M. Liu, L.-W. Chen, and C.-C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology 17, 4359–4366 (2006).

[CrossRef]

Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45, 045601 (2006).

[CrossRef]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[CrossRef]
[PubMed]

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control 35, 249–254 (2006).

K. Patorski, A. Styk, and Z. Sienicki, “Time-average interference microscopy for vibration testing of silicon microelements,” Proc. SPIE 6158, 615806 (2006).

[CrossRef]

J. Kirby, “Which wavelet best reproduces the Fourier power spectrum?” Comput. Geosci. 31, 846–864 (2005).

[CrossRef]

C. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).

[CrossRef]
[PubMed]

K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng. 44, 065601 (2005).

[CrossRef]

M. Ragulskis, R. Maskeliunas, L. Ragulskis, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962 (2005).

[CrossRef]

C. J. Tay, C. Quan, Y. Fu, and Y. Huang, “Instantaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis,” Appl. Opt. 43, 4164–4171 (2004).

[CrossRef]
[PubMed]

H. Liu, A. N. Cartwright, and C. Basaran, “Moiré interferogram phase extraction: a ridge detection algorithm for continous wavelet transforms,” Appl. Opt. 43, 850–857 (2004).

[CrossRef]
[PubMed]

K. Qian, H. Seah, and A. Asundi, “Instantaneous frequency and its application to strain extraction in moiré interferometry,” Appl. Opt. 42, 6504–6513 (2003).

[CrossRef]

K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003).

[CrossRef]

R.-S. Chang, J.-Y. Sheu, C.-H. Lin, and H.-C. Liu, “Analysis of CCD moire pattern for micro-range measurements using the wavelet transform,” Opt. Laser Technol. 35, 43–47 (2003).

[CrossRef]

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry in the MEMS field,” Proc. SPIE 5145, 1–16(2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001).

[CrossRef]

C. Forno and M. Whelan, “Digital moiré subtraction in optical engineering,” Opt. Eng. 40, 2199–2208 (2001).

[CrossRef]

B. Telfer and H. H. Szu, “New wavelet transform normalization to remove frequency bias,” Opt. Eng. 31, 1830–1834 (1992).

[CrossRef]

B. Chatelain, “Holographic photo-elasticity: independent observation of the isochromatic and isopachic fringes for a single model subjected to only one process,” Opt. Laser Technol. 5, 201–204 (1973).

[CrossRef]

J. Wasowski, “Moiré topographic maps,” Opt. Commun. 2, 321–323 (1970).

[CrossRef]

M. Nisida and H. Saito, “A new interferometric method of two-dimensional stress analysis,” Exp. Mech. 4, 366–376 (1964).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison,” J. Phys. Conf. Ser. 76, 012045(2007).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).

[CrossRef]
[PubMed]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng. 47, 768–773 (2009).

[CrossRef]

J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge U. Press, 2008).

J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge U. Press, 2008).

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry in the MEMS field,” Proc. SPIE 5145, 1–16(2003).

[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001).

[CrossRef]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison,” J. Phys. Conf. Ser. 76, 012045(2007).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).

[CrossRef]
[PubMed]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[CrossRef]
[PubMed]

R.-S. Chang, J.-Y. Sheu, C.-H. Lin, and H.-C. Liu, “Analysis of CCD moire pattern for micro-range measurements using the wavelet transform,” Opt. Laser Technol. 35, 43–47 (2003).

[CrossRef]

B. Chatelain, “Holographic photo-elasticity: independent observation of the isochromatic and isopachic fringes for a single model subjected to only one process,” Opt. Laser Technol. 5, 201–204 (1973).

[CrossRef]

B. Chen and C. Basaran, “Automatic full strain field moiré interferometry measurement with nano-scale resolution,” Exp. Mech. 48, 665–673 (2008).

[CrossRef]

C.-M. Liu, L.-W. Chen, and C.-C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology 17, 4359–4366 (2006).

[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

L. Debnath, Wavelets and Signal Processing (Birkhauser, 2003).

[CrossRef]

R. J. Sanford and A. J. Durelli, “Interpretation of fringes in stress-holo-interferometry,” Exp. Mech. 11, 161–166 (1971).

[CrossRef]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

C. Forno and M. Whelan, “Digital moiré subtraction in optical engineering,” Opt. Eng. 40, 2199–2208 (2001).

[CrossRef]

C. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).

[CrossRef]
[PubMed]

C. J. Tay, C. Quan, Y. Fu, and Y. Huang, “Instantaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis,” Appl. Opt. 43, 4164–4171 (2004).

[CrossRef]
[PubMed]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison,” J. Phys. Conf. Ser. 76, 012045(2007).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).

[CrossRef]
[PubMed]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[CrossRef]
[PubMed]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003).

[CrossRef]

J. Kirby, “Which wavelet best reproduces the Fourier power spectrum?” Comput. Geosci. 31, 846–864 (2005).

[CrossRef]

A. S. Kobayashi, Handbook on Experimental Mechanics, 2nd ed. (SEM, 1993).

K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003).

[CrossRef]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison,” J. Phys. Conf. Ser. 76, 012045(2007).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).

[CrossRef]
[PubMed]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[CrossRef]
[PubMed]

M. Li, C. Quan, and C. Tai, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40, 920–929 (2008).

[CrossRef]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).

[CrossRef]
[PubMed]

R.-S. Chang, J.-Y. Sheu, C.-H. Lin, and H.-C. Liu, “Analysis of CCD moire pattern for micro-range measurements using the wavelet transform,” Opt. Laser Technol. 35, 43–47 (2003).

[CrossRef]

C.-M. Liu, L.-W. Chen, and C.-C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology 17, 4359–4366 (2006).

[CrossRef]

R.-S. Chang, J.-Y. Sheu, C.-H. Lin, and H.-C. Liu, “Analysis of CCD moire pattern for micro-range measurements using the wavelet transform,” Opt. Laser Technol. 35, 43–47 (2003).

[CrossRef]

Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45, 045601 (2006).

[CrossRef]

Z. Wang and H. Ma, “Automatic analysis of photomechanics interferogram using wavelet transform,” in Proceedings of 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Society of Experimental Mechanics, 2005).

S. Malat, A Wavelet Tour of Signal Processing (Academic, 1999).

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng. 47, 768–773 (2009).

[CrossRef]

M. Ragulskis, R. Maskeliunas, L. Ragulskis, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962 (2005).

[CrossRef]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge U. Press, 2008).

K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003).

[CrossRef]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain 45, doi: 10.1111/j.1475–1305.2009.00625x (2009) and references therein.

[CrossRef]

M. Nisida and H. Saito, “A new interferometric method of two-dimensional stress analysis,” Exp. Mech. 4, 366–376 (1964).

[CrossRef]

K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003).

[CrossRef]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt. 46, 4613–4624 (2007).

[CrossRef]
[PubMed]

K. Patorski, A. Styk, and Z. Sienicki, “Time-average interference microscopy for vibration testing of silicon microelements,” Proc. SPIE 6158, 615806 (2006).

[CrossRef]

K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng. 45, 085602 (2006).

[CrossRef]

K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng. 44, 065601 (2005).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

K. Patorski, D. Post, R. Czarnek, and Y. Guo, “Real-time optical differentiation for moire interferometry,” Appl. Opt. 26, 1977–1982 (1987).

[CrossRef]
[PubMed]

K. Patorski, Handbook of the Moiré Fringe Technique(Elsevier, 1993).

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry in the MEMS field,” Proc. SPIE 5145, 1–16(2003).

[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001).

[CrossRef]

M. Li, C. Quan, and C. Tai, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40, 920–929 (2008).

[CrossRef]

C. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).

[CrossRef]
[PubMed]

C. J. Tay, C. Quan, Y. Fu, and Y. Huang, “Instantaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis,” Appl. Opt. 43, 4164–4171 (2004).

[CrossRef]
[PubMed]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

M. Ragulskis, R. Maskeliunas, L. Ragulskis, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962 (2005).

[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng. 47, 768–773 (2009).

[CrossRef]

M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain 45, doi: 10.1111/j.1475–1305.2009.00625x (2009) and references therein.

[CrossRef]

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control 35, 249–254 (2006).

M. Ragulskis, R. Maskeliunas, L. Ragulskis, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962 (2005).

[CrossRef]

M. Nisida and H. Saito, “A new interferometric method of two-dimensional stress analysis,” Exp. Mech. 4, 366–376 (1964).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

R. J. Sanford and A. J. Durelli, “Interpretation of fringes in stress-holo-interferometry,” Exp. Mech. 11, 161–166 (1971).

[CrossRef]

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control 35, 249–254 (2006).

R.-S. Chang, J.-Y. Sheu, C.-H. Lin, and H.-C. Liu, “Analysis of CCD moire pattern for micro-range measurements using the wavelet transform,” Opt. Laser Technol. 35, 43–47 (2003).

[CrossRef]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

K. Patorski, A. Styk, and Z. Sienicki, “Time-average interference microscopy for vibration testing of silicon microelements,” Proc. SPIE 6158, 615806 (2006).

[CrossRef]

K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng. 44, 065601 (2005).

[CrossRef]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt. 46, 4613–4624 (2007).

[CrossRef]
[PubMed]

K. Patorski, A. Styk, and Z. Sienicki, “Time-average interference microscopy for vibration testing of silicon microelements,” Proc. SPIE 6158, 615806 (2006).

[CrossRef]

K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng. 45, 085602 (2006).

[CrossRef]

K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng. 44, 065601 (2005).

[CrossRef]

B. Telfer and H. H. Szu, “New wavelet transform normalization to remove frequency bias,” Opt. Eng. 31, 1830–1834 (1992).

[CrossRef]

M. Li, C. Quan, and C. Tai, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40, 920–929 (2008).

[CrossRef]

C. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).

[CrossRef]
[PubMed]

C. J. Tay, C. Quan, Y. Fu, and Y. Huang, “Instantaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis,” Appl. Opt. 43, 4164–4171 (2004).

[CrossRef]
[PubMed]

B. Telfer and H. H. Szu, “New wavelet transform normalization to remove frequency bias,” Opt. Eng. 31, 1830–1834 (1992).

[CrossRef]

M. Ragulskis, R. Maskeliunas, L. Ragulskis, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962 (2005).

[CrossRef]

K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003).

[CrossRef]

J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge U. Press, 2008).

C.-M. Liu, L.-W. Chen, and C.-C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology 17, 4359–4366 (2006).

[CrossRef]

Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45, 045601 (2006).

[CrossRef]

Z. Wang and H. Ma, “Automatic analysis of photomechanics interferogram using wavelet transform,” in Proceedings of 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Society of Experimental Mechanics, 2005).

J. Wasowski, “Moiré topographic maps,” Opt. Commun. 2, 321–323 (1970).

[CrossRef]

C. Forno and M. Whelan, “Digital moiré subtraction in optical engineering,” Opt. Eng. 40, 2199–2208 (2001).

[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001).

[CrossRef]

J. D. Hovanesian and Y. Hung, “Moiré contour-sum, contour-difference and vibration analysis of arbitrary objects,” Appl. Opt. 10, 2734–2738 (1971).

[CrossRef]
[PubMed]

G. Rosvold, “Video-based vibration analysis using projected fringes,” Appl. Opt. 33, 775–786 (1994).

[CrossRef]
[PubMed]

A. Styk and K. Patorski, “Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination,” Appl. Opt. 46, 4613–4624 (2007).

[CrossRef]
[PubMed]

J. Lim, J. Kim, and M. Chung, “Additive type moiré with computer image processing,” Appl. Opt. 28, 2677–2680 (1989).

[CrossRef]
[PubMed]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform,” Appl. Opt. 45, 8722–8732 (2006).

[CrossRef]
[PubMed]

S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369–3377 (2008).

[CrossRef]
[PubMed]

C. J. Tay, C. Quan, Y. Fu, and Y. Huang, “Instantaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis,” Appl. Opt. 43, 4164–4171 (2004).

[CrossRef]
[PubMed]

C. Quan, Y. Fu, C. J. Tay, and J. M. Tan, “Profiling of objects with height steps by wavelet analysis of shadow moiré fringes,” Appl. Opt. 44, 3284–3290 (2005).

[CrossRef]
[PubMed]

K. Qian, H. Seah, and A. Asundi, “Instantaneous frequency and its application to strain extraction in moiré interferometry,” Appl. Opt. 42, 6504–6513 (2003).

[CrossRef]

H. Liu, A. N. Cartwright, and C. Basaran, “Moiré interferogram phase extraction: a ridge detection algorithm for continous wavelet transforms,” Appl. Opt. 43, 850–857 (2004).

[CrossRef]
[PubMed]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, and F. Lilley, “Spatial fringe pattern analysis using the two-dimensional continuous wavelet transform employing a cost function,” Appl. Opt. 46, 6120–6126 (2007).

[CrossRef]
[PubMed]

K. Patorski, D. Post, R. Czarnek, and Y. Guo, “Real-time optical differentiation for moire interferometry,” Appl. Opt. 26, 1977–1982 (1987).

[CrossRef]
[PubMed]

J. Kirby, “Which wavelet best reproduces the Fourier power spectrum?” Comput. Geosci. 31, 846–864 (2005).

[CrossRef]

M. Nisida and H. Saito, “A new interferometric method of two-dimensional stress analysis,” Exp. Mech. 4, 366–376 (1964).

[CrossRef]

R. J. Sanford and A. J. Durelli, “Interpretation of fringes in stress-holo-interferometry,” Exp. Mech. 11, 161–166 (1971).

[CrossRef]

K. Kadooka, K. Kunoo, N. Uda, K. Ono, and T. Nagayasu, “Strain analysis for moiré interferometry using the two-dimensional continuous wavelet transform,” Exp. Mech. 43, 45–51 (2003).

[CrossRef]

B. Chen and C. Basaran, “Automatic full strain field moiré interferometry measurement with nano-scale resolution,” Exp. Mech. 48, 665–673 (2008).

[CrossRef]

L. Saunoriene and M. Ragulskis, “Visualization of fringes in time averaged moiré patterns,” Inf. Technol. Control 35, 249–254 (2006).

A. Z. Abid, M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Ridge extraction algorithms for one-dimensional continuous wavelet transform: a comparison,” J. Phys. Conf. Ser. 76, 012045(2007).

[CrossRef]

C.-M. Liu, L.-W. Chen, and C.-C. Wang, “Nanoscale displacement measurement by a digital nano-moire method with wavelet transformation,” Nanotechnology 17, 4359–4366 (2006).

[CrossRef]

M. Afifi, A. Fassi-Fihri, M. Marjane, K. Nassim, M. Sidki, and S. Rachafi, “Paul wavelet-based algorithm for optical phase distribution evaluation,” Opt. Commun. 211, 47–51 (2002).

[CrossRef]

J. Wasowski, “Moiré topographic maps,” Opt. Commun. 2, 321–323 (1970).

[CrossRef]

Z. Wang and H. Ma, “Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing,” Opt. Eng. 45, 045601 (2006).

[CrossRef]

K. Patorski, Z. Sienicki, and A. Styk, “Phase-shifting method contrast calculations in time-averaged interferometry: error analysis,” Opt. Eng. 44, 065601 (2005).

[CrossRef]

K. Patorski and A. Styk, “Interferogram intensity modulation calculations using temporal phase shifting: error analysis,” Opt. Eng. 45, 085602 (2006).

[CrossRef]

C. Forno and M. Whelan, “Digital moiré subtraction in optical engineering,” Opt. Eng. 40, 2199–2208 (2001).

[CrossRef]

B. Telfer and H. H. Szu, “New wavelet transform normalization to remove frequency bias,” Opt. Eng. 31, 1830–1834 (1992).

[CrossRef]

B. Chatelain, “Holographic photo-elasticity: independent observation of the isochromatic and isopachic fringes for a single model subjected to only one process,” Opt. Laser Technol. 5, 201–204 (1973).

[CrossRef]

M. Li, C. Quan, and C. Tai, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40, 920–929 (2008).

[CrossRef]

R.-S. Chang, J.-Y. Sheu, C.-H. Lin, and H.-C. Liu, “Analysis of CCD moire pattern for micro-range measurements using the wavelet transform,” Opt. Laser Technol. 35, 43–47 (2003).

[CrossRef]

M. Ragulskis, A. Aleksa, and R. Maskeliunas, “Contrast enhancement of time-averaged fringes based on moving average mapping functions,” Opt. Lasers Eng. 47, 768–773 (2009).

[CrossRef]

M. Ragulskis, R. Maskeliunas, L. Ragulskis, and V. Turla, “Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moiré,” Opt. Lasers Eng. 43, 951–962 (2005).

[CrossRef]

M. A. Gdeisat, A. Abid, D. R. Burton, M. J. Lalor, F. Lilley, C. Moore, and M. Qudeisat, “Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: recent progress, challenges, and suggested developments,” Opt. Lasers Eng. 47, 1348–1361 (2009).

[CrossRef]

A. Z. Abid, M. A. Gdeisat, D. R. Burton, M. J. Lalor, H. S. Abdul-Rahman, and F. Lilley, “Fringe pattern analysis using a one-dimensional modified Morlet continuous wavelet transform,” Proc. SPIE 7000, 70000Q (2008).

[CrossRef]

K. Patorski, A. Styk, and Z. Sienicki, “Time-average interference microscopy for vibration testing of silicon microelements,” Proc. SPIE 6158, 615806 (2006).

[CrossRef]

S. Petitgrand, R. Yahiaoui, A. Bosseboeuf, and K. Danaie, “Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization,” Proc. SPIE 4400, 51–60 (2001).

[CrossRef]

A. Bosseboeuf and S. Petitgrand, “Application of microscopic interferometry in the MEMS field,” Proc. SPIE 5145, 1–16(2003).

[CrossRef]

L. Salbut, K. Patorski, M. Jozwik, J. Kacperski, C. Gorecki, A. Jacobelli, and T. Dean, “Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques,” Proc. SPIE 5145, 23–32 (2003).

[CrossRef]

M. Ragulskis and Z. Navickas, “Interpretation of fringes produced by time-averaged projection moiré,” Strain 45, doi: 10.1111/j.1475–1305.2009.00625x (2009) and references therein.

[CrossRef]

A. S. Kobayashi, Handbook on Experimental Mechanics, 2nd ed. (SEM, 1993).

K. Patorski, Handbook of the Moiré Fringe Technique(Elsevier, 1993).

S. Malat, A Wavelet Tour of Signal Processing (Academic, 1999).

J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali, Two-Dimensional Wavelets and their Relatives (Cambridge U. Press, 2008).

L. Debnath, Wavelets and Signal Processing (Birkhauser, 2003).

[CrossRef]

YAWTb: Yet Another Wavelet Toolbox, http://rhea.tele.ucl.ac.be/yawtb/ (accessed 4 March 2009).

Z. Wang and H. Ma, “Automatic analysis of photomechanics interferogram using wavelet transform,” in Proceedings of 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (Society of Experimental Mechanics, 2005).