Abstract

The indoor detection of the human body’s thermal trace plays an important role in the fields of infrared detecting, scouting, infrared camouflage, and infrared rescuing and tracking. Currently, quantitative description and analysis for this technology are lacking due to the absence of human infrared radiation analysis. To solve this problem, we study the heating and cooling process by observing body contact and removal on an object, respectively. Through finite-element simulation and carefully designed experiments, an analytical model of the infrared trace of body contact is developed based on infrared physics and heat transfer theory. Using this model, the impact of body temperature on material thermal parameters is investigated. The sensitivity of material thermal parameters, the thermal distribution, and the changes of the thermograph’s contrast are then found and analyzed. Excellent matching results achieved between the simulation and the experiments demonstrate the strong impact of temperature on material thermal parameters. Conclusively, the new model, simulation, and experimental results are beneficial to the future development and implementation of infrared trace technology.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cuccurullo, P. G. Berardi, R. Carfagna, and V. Pierro, “IR temperature measurements in microwave heating,” Infrared Phys. Technol. 43, 145–150 (2002).
    [CrossRef]
  2. G. Cuccurullo and V. Pierro, “A procedure to measure electromagnetic skin depth in microwave heating,” Infrared Phys. Technol. 46, 49–55 (2004).
    [CrossRef]
  3. K. Kurita, M. Oyado, H. Tanaka, and S. Tottori, “Active infrared thermographic inspection technique for elevated concrete structures using remote heating system,” Infrared Phys. Technol. 52, 208–213 (2009).
    [CrossRef]
  4. E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
    [CrossRef]
  5. Ch. Maierhofer, R. Arndt, and M. Ro¨llig, “Influence of concrete properties on the detection of voids with impulse-thermography,” Infrared Phys. Technol. 49, 213–217 (2007).
    [CrossRef]
  6. J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
    [CrossRef]
  7. V. Vavilov and V. Demin, “Infrared thermographic inspection of operating smokestacks,” Infrared Phys. Technol. 43, 229–232 (2002).
    [CrossRef]
  8. H. Wiggenhauser, “Active IR-applications in civil engineering,” Infrared Phys. Technol. 43, 233–238 (2002).
    [CrossRef]
  9. X. Zonglong and Y. Kuntao, “Theoretical model of infrared radiation of dressed human body indoors,” Proc. SPIE 6621, 662127 (2008).
    [CrossRef]
  10. J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, 3rd ed. (Phlogiston, 2006).
  11. S. K. S. Boetcher, E. M. Sparrow, and M. V. Dugay, “Characteristics of direct-contact, skin-surface temperature sensors,” Int. J. Heat Mass Transfer 52, 3799–3804 (2009).
    [CrossRef]
  12. F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of Heat and Mass Transfer, 6th ed. (Wiley, 2007).
  13. Y. Qiangsheng and P. Baorong, Advanced Heat Transfer (Shanghai JiaoTong U. Press, 2004).
  14. J. P. Holman, Heat Transfer, 9th ed. (McGraw-Hill, 2002).
  15. M. Peng-Cheng, M. Xiao-Bing, and Z. Shu-Yi, “FEM analysis of transient temperature fields of samples with defects during ultrasonic pulse excitation,” J. Nanjing Univ. Sci. Technol. 41, 98–104 (2005).
  16. M. Lin, C. Ziqiang, and W. Yuwen, “Pulse thermography analyzed by the finite element method for nondestructive testing,” J. Xi’an Jiaotong Univ. 34(1), 66–70 (2000).
  17. M. Lin, W. Yuwen, and X. Jin, “A new method to evaluate the subsurface defect by thermal nondestructive testing,” J. Infrared Millim. Waves 19(6), 457–459 (2000).
  18. Z. Jiang, Z. Wang, and Q. Peng, “Real-time generation of dynamic infrared scene,” Int. J. Infrared Millim. Waves 24, 1737–1748 (2003).
    [CrossRef]
  19. T.-C. Lu and C.-C. Chang, “Color image retrieval technique based on color features and image bitmap,” Inform. Process. Manag. 43, 461–472 (2007).
    [CrossRef]
  20. C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51, 221–228(2008).
    [CrossRef]

2009 (2)

K. Kurita, M. Oyado, H. Tanaka, and S. Tottori, “Active infrared thermographic inspection technique for elevated concrete structures using remote heating system,” Infrared Phys. Technol. 52, 208–213 (2009).
[CrossRef]

S. K. S. Boetcher, E. M. Sparrow, and M. V. Dugay, “Characteristics of direct-contact, skin-surface temperature sensors,” Int. J. Heat Mass Transfer 52, 3799–3804 (2009).
[CrossRef]

2008 (3)

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

X. Zonglong and Y. Kuntao, “Theoretical model of infrared radiation of dressed human body indoors,” Proc. SPIE 6621, 662127 (2008).
[CrossRef]

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51, 221–228(2008).
[CrossRef]

2007 (3)

T.-C. Lu and C.-C. Chang, “Color image retrieval technique based on color features and image bitmap,” Inform. Process. Manag. 43, 461–472 (2007).
[CrossRef]

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

Ch. Maierhofer, R. Arndt, and M. Ro¨llig, “Influence of concrete properties on the detection of voids with impulse-thermography,” Infrared Phys. Technol. 49, 213–217 (2007).
[CrossRef]

2005 (1)

M. Peng-Cheng, M. Xiao-Bing, and Z. Shu-Yi, “FEM analysis of transient temperature fields of samples with defects during ultrasonic pulse excitation,” J. Nanjing Univ. Sci. Technol. 41, 98–104 (2005).

2004 (1)

G. Cuccurullo and V. Pierro, “A procedure to measure electromagnetic skin depth in microwave heating,” Infrared Phys. Technol. 46, 49–55 (2004).
[CrossRef]

2003 (1)

Z. Jiang, Z. Wang, and Q. Peng, “Real-time generation of dynamic infrared scene,” Int. J. Infrared Millim. Waves 24, 1737–1748 (2003).
[CrossRef]

2002 (3)

V. Vavilov and V. Demin, “Infrared thermographic inspection of operating smokestacks,” Infrared Phys. Technol. 43, 229–232 (2002).
[CrossRef]

H. Wiggenhauser, “Active IR-applications in civil engineering,” Infrared Phys. Technol. 43, 233–238 (2002).
[CrossRef]

G. Cuccurullo, P. G. Berardi, R. Carfagna, and V. Pierro, “IR temperature measurements in microwave heating,” Infrared Phys. Technol. 43, 145–150 (2002).
[CrossRef]

2000 (2)

M. Lin, C. Ziqiang, and W. Yuwen, “Pulse thermography analyzed by the finite element method for nondestructive testing,” J. Xi’an Jiaotong Univ. 34(1), 66–70 (2000).

M. Lin, W. Yuwen, and X. Jin, “A new method to evaluate the subsurface defect by thermal nondestructive testing,” J. Infrared Millim. Waves 19(6), 457–459 (2000).

Arndt, R.

Ch. Maierhofer, R. Arndt, and M. Ro¨llig, “Influence of concrete properties on the detection of voids with impulse-thermography,” Infrared Phys. Technol. 49, 213–217 (2007).
[CrossRef]

Bagavathiappan, S.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

Baorong, P.

Y. Qiangsheng and P. Baorong, Advanced Heat Transfer (Shanghai JiaoTong U. Press, 2004).

Berardi, P. G.

G. Cuccurullo, P. G. Berardi, R. Carfagna, and V. Pierro, “IR temperature measurements in microwave heating,” Infrared Phys. Technol. 43, 145–150 (2002).
[CrossRef]

Bergman, T. L.

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of Heat and Mass Transfer, 6th ed. (Wiley, 2007).

Bison, P. G.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

Boetcher, S. K. S.

S. K. S. Boetcher, E. M. Sparrow, and M. V. Dugay, “Characteristics of direct-contact, skin-surface temperature sensors,” Int. J. Heat Mass Transfer 52, 3799–3804 (2009).
[CrossRef]

Carfagna, R.

G. Cuccurullo, P. G. Berardi, R. Carfagna, and V. Pierro, “IR temperature measurements in microwave heating,” Infrared Phys. Technol. 43, 145–150 (2002).
[CrossRef]

Chang, C.-C.

T.-C. Lu and C.-C. Chang, “Color image retrieval technique based on color features and image bitmap,” Inform. Process. Manag. 43, 461–472 (2007).
[CrossRef]

Cuccurullo, G.

G. Cuccurullo and V. Pierro, “A procedure to measure electromagnetic skin depth in microwave heating,” Infrared Phys. Technol. 46, 49–55 (2004).
[CrossRef]

G. Cuccurullo, P. G. Berardi, R. Carfagna, and V. Pierro, “IR temperature measurements in microwave heating,” Infrared Phys. Technol. 43, 145–150 (2002).
[CrossRef]

Demin, V.

V. Vavilov and V. Demin, “Infrared thermographic inspection of operating smokestacks,” Infrared Phys. Technol. 43, 229–232 (2002).
[CrossRef]

Dewitt, D. P.

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of Heat and Mass Transfer, 6th ed. (Wiley, 2007).

Dugay, M. V.

S. K. S. Boetcher, E. M. Sparrow, and M. V. Dugay, “Characteristics of direct-contact, skin-surface temperature sensors,” Int. J. Heat Mass Transfer 52, 3799–3804 (2009).
[CrossRef]

Garay-Sevilla, M. E.

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51, 221–228(2008).
[CrossRef]

Grinzato, E.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

Holman, J. P.

J. P. Holman, Heat Transfer, 9th ed. (McGraw-Hill, 2002).

Incropera, F. P.

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of Heat and Mass Transfer, 6th ed. (Wiley, 2007).

Jayakumar, T.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

Jiang, Z.

Z. Jiang, Z. Wang, and Q. Peng, “Real-time generation of dynamic infrared scene,” Int. J. Infrared Millim. Waves 24, 1737–1748 (2003).
[CrossRef]

Jin, X.

M. Lin, W. Yuwen, and X. Jin, “A new method to evaluate the subsurface defect by thermal nondestructive testing,” J. Infrared Millim. Waves 19(6), 457–459 (2000).

Kuntao, Y.

X. Zonglong and Y. Kuntao, “Theoretical model of infrared radiation of dressed human body indoors,” Proc. SPIE 6621, 662127 (2008).
[CrossRef]

Kurita, K.

K. Kurita, M. Oyado, H. Tanaka, and S. Tottori, “Active infrared thermographic inspection technique for elevated concrete structures using remote heating system,” Infrared Phys. Technol. 52, 208–213 (2009).
[CrossRef]

Laskar, J. M.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

Lienhard, J. H.

J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, 3rd ed. (Phlogiston, 2006).

J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, 3rd ed. (Phlogiston, 2006).

Lin, M.

M. Lin, W. Yuwen, and X. Jin, “A new method to evaluate the subsurface defect by thermal nondestructive testing,” J. Infrared Millim. Waves 19(6), 457–459 (2000).

M. Lin, C. Ziqiang, and W. Yuwen, “Pulse thermography analyzed by the finite element method for nondestructive testing,” J. Xi’an Jiaotong Univ. 34(1), 66–70 (2000).

Lu, T.-C.

T.-C. Lu and C.-C. Chang, “Color image retrieval technique based on color features and image bitmap,” Inform. Process. Manag. 43, 461–472 (2007).
[CrossRef]

Maierhofer, Ch.

Ch. Maierhofer, R. Arndt, and M. Ro¨llig, “Influence of concrete properties on the detection of voids with impulse-thermography,” Infrared Phys. Technol. 49, 213–217 (2007).
[CrossRef]

Marinetti, S.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

Oyado, M.

K. Kurita, M. Oyado, H. Tanaka, and S. Tottori, “Active infrared thermographic inspection technique for elevated concrete structures using remote heating system,” Infrared Phys. Technol. 52, 208–213 (2009).
[CrossRef]

Peng, Q.

Z. Jiang, Z. Wang, and Q. Peng, “Real-time generation of dynamic infrared scene,” Int. J. Infrared Millim. Waves 24, 1737–1748 (2003).
[CrossRef]

Peng-Cheng, M.

M. Peng-Cheng, M. Xiao-Bing, and Z. Shu-Yi, “FEM analysis of transient temperature fields of samples with defects during ultrasonic pulse excitation,” J. Nanjing Univ. Sci. Technol. 41, 98–104 (2005).

Philip, J.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

Pierro, V.

G. Cuccurullo and V. Pierro, “A procedure to measure electromagnetic skin depth in microwave heating,” Infrared Phys. Technol. 46, 49–55 (2004).
[CrossRef]

G. Cuccurullo, P. G. Berardi, R. Carfagna, and V. Pierro, “IR temperature measurements in microwave heating,” Infrared Phys. Technol. 43, 145–150 (2002).
[CrossRef]

Qiangsheng, Y.

Y. Qiangsheng and P. Baorong, Advanced Heat Transfer (Shanghai JiaoTong U. Press, 2004).

Raj, B.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

Ro¨llig, M.

Ch. Maierhofer, R. Arndt, and M. Ro¨llig, “Influence of concrete properties on the detection of voids with impulse-thermography,” Infrared Phys. Technol. 49, 213–217 (2007).
[CrossRef]

Sanchez-Marin, F. J.

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51, 221–228(2008).
[CrossRef]

Sardar, M.

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

Shu-Yi, Z.

M. Peng-Cheng, M. Xiao-Bing, and Z. Shu-Yi, “FEM analysis of transient temperature fields of samples with defects during ultrasonic pulse excitation,” J. Nanjing Univ. Sci. Technol. 41, 98–104 (2005).

Sparrow, E. M.

S. K. S. Boetcher, E. M. Sparrow, and M. V. Dugay, “Characteristics of direct-contact, skin-surface temperature sensors,” Int. J. Heat Mass Transfer 52, 3799–3804 (2009).
[CrossRef]

Tanaka, H.

K. Kurita, M. Oyado, H. Tanaka, and S. Tottori, “Active infrared thermographic inspection technique for elevated concrete structures using remote heating system,” Infrared Phys. Technol. 52, 208–213 (2009).
[CrossRef]

Tottori, S.

K. Kurita, M. Oyado, H. Tanaka, and S. Tottori, “Active infrared thermographic inspection technique for elevated concrete structures using remote heating system,” Infrared Phys. Technol. 52, 208–213 (2009).
[CrossRef]

Vavilov, V.

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

V. Vavilov and V. Demin, “Infrared thermographic inspection of operating smokestacks,” Infrared Phys. Technol. 43, 229–232 (2002).
[CrossRef]

Villaseñor-Mora, C.

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51, 221–228(2008).
[CrossRef]

Wang, Z.

Z. Jiang, Z. Wang, and Q. Peng, “Real-time generation of dynamic infrared scene,” Int. J. Infrared Millim. Waves 24, 1737–1748 (2003).
[CrossRef]

Wiggenhauser, H.

H. Wiggenhauser, “Active IR-applications in civil engineering,” Infrared Phys. Technol. 43, 233–238 (2002).
[CrossRef]

Xiao-Bing, M.

M. Peng-Cheng, M. Xiao-Bing, and Z. Shu-Yi, “FEM analysis of transient temperature fields of samples with defects during ultrasonic pulse excitation,” J. Nanjing Univ. Sci. Technol. 41, 98–104 (2005).

Yuwen, W.

M. Lin, C. Ziqiang, and W. Yuwen, “Pulse thermography analyzed by the finite element method for nondestructive testing,” J. Xi’an Jiaotong Univ. 34(1), 66–70 (2000).

M. Lin, W. Yuwen, and X. Jin, “A new method to evaluate the subsurface defect by thermal nondestructive testing,” J. Infrared Millim. Waves 19(6), 457–459 (2000).

Ziqiang, C.

M. Lin, C. Ziqiang, and W. Yuwen, “Pulse thermography analyzed by the finite element method for nondestructive testing,” J. Xi’an Jiaotong Univ. 34(1), 66–70 (2000).

Zonglong, X.

X. Zonglong and Y. Kuntao, “Theoretical model of infrared radiation of dressed human body indoors,” Proc. SPIE 6621, 662127 (2008).
[CrossRef]

Inform. Process. Manag. (1)

T.-C. Lu and C.-C. Chang, “Color image retrieval technique based on color features and image bitmap,” Inform. Process. Manag. 43, 461–472 (2007).
[CrossRef]

Infrared Phys. Technol. (8)

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51, 221–228(2008).
[CrossRef]

G. Cuccurullo, P. G. Berardi, R. Carfagna, and V. Pierro, “IR temperature measurements in microwave heating,” Infrared Phys. Technol. 43, 145–150 (2002).
[CrossRef]

G. Cuccurullo and V. Pierro, “A procedure to measure electromagnetic skin depth in microwave heating,” Infrared Phys. Technol. 46, 49–55 (2004).
[CrossRef]

K. Kurita, M. Oyado, H. Tanaka, and S. Tottori, “Active infrared thermographic inspection technique for elevated concrete structures using remote heating system,” Infrared Phys. Technol. 52, 208–213 (2009).
[CrossRef]

E. Grinzato, V. Vavilov, P. G. Bison, and S. Marinetti, “Hidden corrosion detection in thick metallic components by transient IR thermography,” Infrared Phys. Technol. 49, 234–238 (2007).
[CrossRef]

Ch. Maierhofer, R. Arndt, and M. Ro¨llig, “Influence of concrete properties on the detection of voids with impulse-thermography,” Infrared Phys. Technol. 49, 213–217 (2007).
[CrossRef]

V. Vavilov and V. Demin, “Infrared thermographic inspection of operating smokestacks,” Infrared Phys. Technol. 43, 229–232 (2002).
[CrossRef]

H. Wiggenhauser, “Active IR-applications in civil engineering,” Infrared Phys. Technol. 43, 233–238 (2002).
[CrossRef]

Int. J. Heat Mass Transfer (1)

S. K. S. Boetcher, E. M. Sparrow, and M. V. Dugay, “Characteristics of direct-contact, skin-surface temperature sensors,” Int. J. Heat Mass Transfer 52, 3799–3804 (2009).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

Z. Jiang, Z. Wang, and Q. Peng, “Real-time generation of dynamic infrared scene,” Int. J. Infrared Millim. Waves 24, 1737–1748 (2003).
[CrossRef]

J. Infrared Millim. Waves (1)

M. Lin, W. Yuwen, and X. Jin, “A new method to evaluate the subsurface defect by thermal nondestructive testing,” J. Infrared Millim. Waves 19(6), 457–459 (2000).

J. Nanjing Univ. Sci. Technol. (1)

M. Peng-Cheng, M. Xiao-Bing, and Z. Shu-Yi, “FEM analysis of transient temperature fields of samples with defects during ultrasonic pulse excitation,” J. Nanjing Univ. Sci. Technol. 41, 98–104 (2005).

J. Xi’an Jiaotong Univ. (1)

M. Lin, C. Ziqiang, and W. Yuwen, “Pulse thermography analyzed by the finite element method for nondestructive testing,” J. Xi’an Jiaotong Univ. 34(1), 66–70 (2000).

Mater. Lett. (1)

J. M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj, “Measurement of thermal diffusivity of solids using infrared thermography,” Mater. Lett. 62, 2740–2742(2008).
[CrossRef]

Proc. SPIE (1)

X. Zonglong and Y. Kuntao, “Theoretical model of infrared radiation of dressed human body indoors,” Proc. SPIE 6621, 662127 (2008).
[CrossRef]

Other (4)

J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, 3rd ed. (Phlogiston, 2006).

F. P. Incropera, D. P. Dewitt, and T. L. Bergman, Fundamentals of Heat and Mass Transfer, 6th ed. (Wiley, 2007).

Y. Qiangsheng and P. Baorong, Advanced Heat Transfer (Shanghai JiaoTong U. Press, 2004).

J. P. Holman, Heat Transfer, 9th ed. (McGraw-Hill, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of thermal trace formed by human body: (a) contact heat transfer stage and (b) thermal trace diffusion stage.

Fig. 2
Fig. 2

Three-dimensional FEM model of infrared trace of a hand.

Fig. 3
Fig. 3

Infrared images of thermal trace of wood after (a) 1, (b) 1.25, (c) 1.5, (d) 60, and (e) 420 s .

Fig. 4
Fig. 4

(a) Experimental and (b) simulated results.

Fig. 5
Fig. 5

Variations of contact temperatures for a contact time of 1 min .

Fig. 6
Fig. 6

Simulated 3-D graphics of temperature fields of infrared trace in the wood board after 1 and 420 s .

Fig. 7
Fig. 7

Experimental 3-D graphics of temperature fields of infrared trace in the wood board after 1 and 420 s .

Fig. 8
Fig. 8

Simulation results of temperature change.

Fig. 9
Fig. 9

Experimental results of gray level in different materials.

Fig. 10
Fig. 10

Infrared images of thermal traces of (a) wood and (b) marble at 60 s .

Fig. 11
Fig. 11

Thermal contrast as a function of time.

Fig. 12
Fig. 12

Change of image contrast in time.

Fig. 13
Fig. 13

Temperature characteristics at different contact times.

Tables (1)

Tables Icon

Table 1 Thermal Properties of Test Materials

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

κ ρ C ( 2 T x 2 + 2 T y 2 + 2 T z 2 ) T t = 0.
T ( x , y , z , 0 ) = T sur ,
T ( x , y , 0 , t ) | t > 0 = { T c ( at contact ) T sur ( elsewhere ) ,
κ T ( x , y , L , t ) z | t > 0 = h ( T T sur ) ,
h = h c + h r , h r = ε σ ( T + T sur ) ( T 2 + T sur 2 ) ,
T c = k s ρ s c s k s ρ s c s + k ρ c ( T s T i ) + T i .
T ( x , y , z , 0 ) = { T d ( x , y , z ) thermal trace area T sur elsewhere ,
κ T ( x , y , 0 , t ) z | t > 0 = h ( T T sur ) ,
κ T ( x , y , L , t ) z | t > 0 = h ( T T sur ) .
T ( z , t ) T c T sur T c = erf ( z 2 κ t ) .
T ( z , t ) T c T sur = 1 erf c ( z / 4 α t ) + 2 exp [ H ( 2 L + z ) + H 2 α t ] erf c [ H α t + ( 2 L + z ) / 4 α t ] + erf c ( 2 L z ) / 4 α t 2 exp [ H ( 2 L z ) + H 2 α t ] × erf c [ H α t + ( 2 L z ) / 4 α t ] erf c [ ( 2 L + z ) / 4 α t ] + .
T ( z , t ) = m = 1 C m X m exp ( α β m 2 t ) , X m ( z ) = β m cos ( β m z ) + H sin ( β m z , C m = 1 N m 2 0 L T d ( x , y , z ) X m ( z ) d z ,
G = [ r + ( 1 r ) · E E min E max E min ] × 255 ,
c T = T t T b T b ,
c G = G t G b G b ,

Metrics