Abstract

Information about the three-dimensional structure of solar magnetic fields is encoded in the polarized spectra of solar radiation by a host of physical processes. To extract this information, solar spectra must be obtained in a variety of magnetically sensitive spectral lines at high spatial, spectral, and temporal resolution with high precision. The need to observe many different spectral lines drives the development of Stokes polarimeters with a high degree of wavelength diversity. We present a new paradigm for the design of polarization modulators that operate over a wide wavelength range with near-optimal polarimetric efficiency and are directly applicable to the next generation of multiline Stokes polarimeters. These modulators are not achromatic in the usual sense because their polarimetric properties vary with wavelength, but they do so in an optimal way. Thus, we refer to these modulators as polychromatic. We present here the theory behind polychromatic modulators, illustrate the concept with design examples, and present the performance properties of a prototype polychromatic modulator.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Hale, “On the probable existence of a magnetic field in sunspots,” Astrophys. J. 28, 315–343 (1908).
    [CrossRef]
  2. J. O. Stenflo, “The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere,” Sol. Phys. 80, 209–226 (1982).
    [CrossRef]
  3. J. Trujillo Bueno, N. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).
    [CrossRef] [PubMed]
  4. M. Faurobert-Scholl, “Investigation of microturbulent magnetic fields in the solar photosphere by their Hanle effect in the Sr I 4607Åline,” Astron. Astrophys. 268, 765–774(1993).
  5. J. O. Stenflo and C. U. Keller, “The second solar spectrum. A new window for diagnostics of the Sun,” Astron. Astrophys. 321, 927–934 (1997).
  6. A. López Ariste, S. Tomczyk, and R. Casini, “Hyperfine structure as a diagnostic of solar magnetic fields,” Astrophys. J. 580, 519–527 (2002).
    [CrossRef]
  7. A. López Ariste, S. Tomczyk, and R. Casini, “Quiet sun magnetic field diagnostics with a Mn line,” Astron. Astrophys. 454, 663–668 (2006).
    [CrossRef]
  8. A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
    [CrossRef]
  9. J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, “Hydrogen Hα line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer,” Astron. Astrophys. 465, 621–631 (2007).
    [CrossRef]
  10. J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Sol. Phys. 32, 41–63 (1973).
    [CrossRef]
  11. J. O. Stenflo, S. K. Solanki, and J. W. Harvey, “Diagnostics of solar magnetic fluxtubes with the infrared line Fe I λ15648.54Å,” Astron. Astrophys. 173, 167–179 (1987).
  12. I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).
  13. H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
    [CrossRef]
  14. P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
    [CrossRef]
  15. S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
    [CrossRef]
  16. M. Collados, “European Solar Telescope (EST): project status,” Proc. SPIE 7012, 70120J (2008).
    [CrossRef]
  17. A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004).
    [CrossRef]
  18. J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008).
    [CrossRef]
  19. M. Collados, “High resolution spectropolarimetry and magnetography,” in 3rd Advances in Solar Physics Euroconference, B.Schmieder, A.Hoffman, and J.Staude, eds., ASP Conf. Ser. (1999), Vol. 184, pp. 3–22.
  20. J. C. del Toro Iniesta and M. Collados, “Optimum modulation and demodulation matrices for solar polarimetry,” Appl. Opt. 39, 1637–1642 (2000).
    [CrossRef]
  21. S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
    [CrossRef]
  22. K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.
  23. Y. Hanaoka, “Ferroelectric liquid crystal polarimeter for high-cadence Hα imaging polarimetry,” Sol. Phys. 222, 265–278(2004).
    [CrossRef]
  24. D. Elmore, National Solar Observatory (private communication, 2008).
  25. A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
    [CrossRef]
  26. D. Gisler, A. Feller, and A. Gandorfer, “Achromatic liquid crystal polarization modulator,” Proc. SPIE 4843, 45–54 (2003).
    [CrossRef]
  27. C. Xu, Z. Qu, X. Zhang, C. Jin, and X. Yan, “Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower,” Appl. Opt. 45, 8428–8433 (2006).
    [CrossRef] [PubMed]
  28. M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics 21, 239–245 (1979).
    [CrossRef]
  29. B. W. Lites, “Rotating waveplates as polarization modulators for Stokes polarimetry of the Sun—evaluation of seeing-induced crosstalk errors,” Appl. Opt. 26, 3838–3845 (1987).
    [CrossRef] [PubMed]
  30. D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
    [CrossRef]

2008

M. Collados, “European Solar Telescope (EST): project status,” Proc. SPIE 7012, 70120J (2008).
[CrossRef]

J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008).
[CrossRef]

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

2007

A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
[CrossRef]

J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, “Hydrogen Hα line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer,” Astron. Astrophys. 465, 621–631 (2007).
[CrossRef]

2006

A. López Ariste, S. Tomczyk, and R. Casini, “Quiet sun magnetic field diagnostics with a Mn line,” Astron. Astrophys. 454, 663–668 (2006).
[CrossRef]

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

C. Xu, Z. Qu, X. Zhang, C. Jin, and X. Yan, “Polarimeter with two ferroelectric liquid-crystal modulators attached to the Yunnan solar tower,” Appl. Opt. 45, 8428–8433 (2006).
[CrossRef] [PubMed]

2004

Y. Hanaoka, “Ferroelectric liquid crystal polarimeter for high-cadence Hα imaging polarimetry,” Sol. Phys. 222, 265–278(2004).
[CrossRef]

A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004).
[CrossRef]

J. Trujillo Bueno, N. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).
[CrossRef] [PubMed]

2003

P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
[CrossRef]

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

D. Gisler, A. Feller, and A. Gandorfer, “Achromatic liquid crystal polarization modulator,” Proc. SPIE 4843, 45–54 (2003).
[CrossRef]

2002

A. López Ariste, S. Tomczyk, and R. Casini, “Hyperfine structure as a diagnostic of solar magnetic fields,” Astrophys. J. 580, 519–527 (2002).
[CrossRef]

2000

1999

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
[CrossRef]

1997

J. O. Stenflo and C. U. Keller, “The second solar spectrum. A new window for diagnostics of the Sun,” Astron. Astrophys. 321, 927–934 (1997).

1995

I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).

1993

M. Faurobert-Scholl, “Investigation of microturbulent magnetic fields in the solar photosphere by their Hanle effect in the Sr I 4607Åline,” Astron. Astrophys. 268, 765–774(1993).

1987

J. O. Stenflo, S. K. Solanki, and J. W. Harvey, “Diagnostics of solar magnetic fluxtubes with the infrared line Fe I λ15648.54Å,” Astron. Astrophys. 173, 167–179 (1987).

B. W. Lites, “Rotating waveplates as polarization modulators for Stokes polarimetry of the Sun—evaluation of seeing-induced crosstalk errors,” Appl. Opt. 26, 3838–3845 (1987).
[CrossRef] [PubMed]

1982

J. O. Stenflo, “The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere,” Sol. Phys. 80, 209–226 (1982).
[CrossRef]

1979

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics 21, 239–245 (1979).
[CrossRef]

1973

J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Sol. Phys. 32, 41–63 (1973).
[CrossRef]

1908

G. E. Hale, “On the probable existence of a magnetic field in sunspots,” Astrophys. J. 28, 315–343 (1908).
[CrossRef]

Asensio Ramos, A.

A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
[CrossRef]

J. Trujillo Bueno, N. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).
[CrossRef] [PubMed]

Beckman, R. J.

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics 21, 239–245 (1979).
[CrossRef]

Briggs, J.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Burkepile, J.

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

Card, G. L.

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

Casini, R.

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

A. López Ariste, S. Tomczyk, and R. Casini, “Quiet sun magnetic field diagnostics with a Mn line,” Astron. Astrophys. 454, 663–668 (2006).
[CrossRef]

A. López Ariste, S. Tomczyk, and R. Casini, “Hyperfine structure as a diagnostic of solar magnetic fields,” Astrophys. J. 580, 519–527 (2002).
[CrossRef]

Collados, M.

M. Collados, “European Solar Telescope (EST): project status,” Proc. SPIE 7012, 70120J (2008).
[CrossRef]

A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
[CrossRef]

J. C. del Toro Iniesta and M. Collados, “Optimum modulation and demodulation matrices for solar polarimetry,” Appl. Opt. 39, 1637–1642 (2000).
[CrossRef]

M. Collados, “High resolution spectropolarimetry and magnetography,” in 3rd Advances in Solar Physics Euroconference, B.Schmieder, A.Hoffman, and J.Staude, eds., ASP Conf. Ser. (1999), Vol. 184, pp. 3–22.

Conover, W. J.

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics 21, 239–245 (1979).
[CrossRef]

Dalrymple, N. E.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Darnell, T.

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

Davis, M.

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

del Toro Iniesta, J. C.

Denker, C.

J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008).
[CrossRef]

Denker, C. J.

P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
[CrossRef]

Didkovsky, L. I.

P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
[CrossRef]

Elmore, D.

D. Elmore, National Solar Observatory (private communication, 2008).

Elmore, D. F.

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Faurobert-Scholl, M.

M. Faurobert-Scholl, “Investigation of microturbulent magnetic fields in the solar photosphere by their Hanle effect in the Sr I 4607Åline,” Astron. Astrophys. 268, 765–774(1993).

Feller, A.

D. Gisler, A. Feller, and A. Gandorfer, “Achromatic liquid crystal polarization modulator,” Proc. SPIE 4843, 45–54 (2003).
[CrossRef]

Fletcher, S.

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Gandorfer, A.

D. Gisler, A. Feller, and A. Gandorfer, “Achromatic liquid crystal polarization modulator,” Proc. SPIE 4843, 45–54 (2003).
[CrossRef]

Gandorfer, A. M.

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
[CrossRef]

Gisler, D.

D. Gisler, A. Feller, and A. Gandorfer, “Achromatic liquid crystal polarization modulator,” Proc. SPIE 4843, 45–54 (2003).
[CrossRef]

Goode, P.

P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
[CrossRef]

Gregory, S.

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Gullixson, C.

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Hale, G. E.

G. E. Hale, “On the probable existence of a magnetic field in sunspots,” Astrophys. J. 28, 315–343 (1908).
[CrossRef]

Hanaoka, Y.

Y. Hanaoka, “Ferroelectric liquid crystal polarimeter for high-cadence Hα imaging polarimetry,” Sol. Phys. 222, 265–278(2004).
[CrossRef]

Harvey, J. W.

I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).

J. O. Stenflo, S. K. Solanki, and J. W. Harvey, “Diagnostics of solar magnetic fluxtubes with the infrared line Fe I λ15648.54Å,” Astron. Astrophys. 173, 167–179 (1987).

Hegwer, S.

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Heinzel, P.

J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, “Hydrogen Hα line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer,” Astron. Astrophys. 465, 621–631 (2007).
[CrossRef]

Hill, F.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Jin, C.

Judge, P. G.

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

Keil, S. L.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Keller, C. U.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

J. O. Stenflo and C. U. Keller, “The second solar spectrum. A new window for diagnostics of the Sun,” Astron. Astrophys. 321, 927–934 (1997).

Kuhn, J. R.

P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
[CrossRef]

Lecinski, A.

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

Lites, B.

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Lites, B. W.

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

B. W. Lites, “Rotating waveplates as polarization modulators for Stokes polarimetry of the Sun—evaluation of seeing-induced crosstalk errors,” Appl. Opt. 26, 3838–3845 (1987).
[CrossRef] [PubMed]

Livingston, W.

I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).

López Ariste, A.

A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
[CrossRef]

A. López Ariste, S. Tomczyk, and R. Casini, “Quiet sun magnetic field diagnostics with a Mn line,” Astron. Astrophys. 454, 663–668 (2006).
[CrossRef]

A. López Ariste, S. Tomczyk, and R. Casini, “Hyperfine structure as a diagnostic of solar magnetic fields,” Astrophys. J. 580, 519–527 (2002).
[CrossRef]

Lull, R.

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

Ma, J.

J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008).
[CrossRef]

Martínez González, M.

A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
[CrossRef]

McKay, M. D.

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics 21, 239–245 (1979).
[CrossRef]

Nelson, P. G.

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

Oschmann, J. M.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Perekhod, A. V.

A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004).
[CrossRef]

Pietarila, A.

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

Qu, Z.

Radick, R. R.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Ren, D.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Rimmele, T.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Rüedi, I.

I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).

Sahal-Bréchot, S.

J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, “Hydrogen Hα line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer,” Astron. Astrophys. 465, 621–631 (2007).
[CrossRef]

Samoylov, A. V.

A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004).
[CrossRef]

Samoylov, V. S.

A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004).
[CrossRef]

Sankarasubramanian, K.

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Shchukina, N.

J. Trujillo Bueno, N. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).
[CrossRef] [PubMed]

Sigwarth, M.

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Socas-Navarro, H.

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

Solanki, S. K.

I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).

J. O. Stenflo, S. K. Solanki, and J. W. Harvey, “Diagnostics of solar magnetic fluxtubes with the infrared line Fe I λ15648.54Å,” Astron. Astrophys. 173, 167–179 (1987).

Stenflo, J. O.

J. O. Stenflo and C. U. Keller, “The second solar spectrum. A new window for diagnostics of the Sun,” Astron. Astrophys. 321, 927–934 (1997).

J. O. Stenflo, S. K. Solanki, and J. W. Harvey, “Diagnostics of solar magnetic fluxtubes with the infrared line Fe I λ15648.54Å,” Astron. Astrophys. 173, 167–179 (1987).

J. O. Stenflo, “The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere,” Sol. Phys. 80, 209–226 (1982).
[CrossRef]

J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Sol. Phys. 32, 41–63 (1973).
[CrossRef]

Štepán, J.

J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, “Hydrogen Hα line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer,” Astron. Astrophys. 465, 621–631 (2007).
[CrossRef]

Streander, K. V.

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

Tomczyk, S.

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

A. López Ariste, S. Tomczyk, and R. Casini, “Quiet sun magnetic field diagnostics with a Mn line,” Astron. Astrophys. 454, 663–668 (2006).
[CrossRef]

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

A. López Ariste, S. Tomczyk, and R. Casini, “Hyperfine structure as a diagnostic of solar magnetic fields,” Astrophys. J. 580, 519–527 (2002).
[CrossRef]

Trujillo Bueno, J.

A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
[CrossRef]

J. Trujillo Bueno, N. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).
[CrossRef] [PubMed]

Vidmachenko, A. P.

A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004).
[CrossRef]

Wang, H.

P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
[CrossRef]

Wang, H. M.

J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008).
[CrossRef]

Wang, J. S.

J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008).
[CrossRef]

Warner, M.

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

Xu, C.

Yan, X.

Zhang, X.

Appl. Opt.

Astron. Astrophys.

M. Faurobert-Scholl, “Investigation of microturbulent magnetic fields in the solar photosphere by their Hanle effect in the Sr I 4607Åline,” Astron. Astrophys. 268, 765–774(1993).

J. O. Stenflo and C. U. Keller, “The second solar spectrum. A new window for diagnostics of the Sun,” Astron. Astrophys. 321, 927–934 (1997).

A. López Ariste, S. Tomczyk, and R. Casini, “Quiet sun magnetic field diagnostics with a Mn line,” Astron. Astrophys. 454, 663–668 (2006).
[CrossRef]

J. Štěpán, P. Heinzel, and S. Sahal-Bréchot, “Hydrogen Hα line polarization in solar flares. Theoretical investigation of atomic polarization by proton beams considering self-consistent NLTE polarized radiative transfer,” Astron. Astrophys. 465, 621–631 (2007).
[CrossRef]

J. O. Stenflo, S. K. Solanki, and J. W. Harvey, “Diagnostics of solar magnetic fluxtubes with the infrared line Fe I λ15648.54Å,” Astron. Astrophys. 173, 167–179 (1987).

I. Rüedi, S. K. Solanki, W. Livingston, and J. W. Harvey, “Interesting lines in the infrared solar spectrum. III. A polarimetric survey between 1.05 and 2.50μm,” Astron. Astrophys. 113, 91–106 (1995).

Astrophys. J.

A. Asensio Ramos, M. Martínez González, A. López Ariste, J. Trujillo Bueno, and M. Collados, “A near-infrared line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere,” Astrophys. J. 659, 829–847 (2007).
[CrossRef]

A. López Ariste, S. Tomczyk, and R. Casini, “Hyperfine structure as a diagnostic of solar magnetic fields,” Astrophys. J. 580, 519–527 (2002).
[CrossRef]

G. E. Hale, “On the probable existence of a magnetic field in sunspots,” Astrophys. J. 28, 315–343 (1908).
[CrossRef]

Chin. J. Astron. Astrophys.

J. Ma, J. S. Wang, C. Denker, and H. M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astron. Astrophys. 8, 349–361 (2008).
[CrossRef]

J. Korean Astron. Soc.

P. Goode, C. J. Denker, L. I. Didkovsky, J. R. Kuhn, and H. Wang, “1.6m solar telescope in Big Bear—the NST,” J. Korean Astron. Soc. 36, 125–133 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

A. V. Samoylov, V. S. Samoylov, A. P. Vidmachenko, and A. V. Perekhod, “Achromatic and super-achromatic zero-order waveplates,” J. Quant. Spectrosc. Radiat. Transfer 88, 319–325(2004).
[CrossRef]

Nature

J. Trujillo Bueno, N. Shchukina, and A. Asensio Ramos, “A substantial amount of hidden magnetic energy in the quiet Sun,” Nature 430, 326–329 (2004).
[CrossRef] [PubMed]

Opt. Eng.

A. M. Gandorfer, “Ferroelectric retarders as an alternative to piezoelastic modulators for use in solar Stokes vector polarimetry,” Opt. Eng. 38, 1402–1408 (1999).
[CrossRef]

Proc. SPIE

D. Gisler, A. Feller, and A. Gandorfer, “Achromatic liquid crystal polarization modulator,” Proc. SPIE 4843, 45–54 (2003).
[CrossRef]

D. F. Elmore, R. Casini, G. L. Card, M. Davis, A. Lecinski, R. Lull, P. G. Nelson, and S. Tomczyk, “A new spectro-polarimeter for solar prominence and filament magnetic field measurements,” Proc. SPIE 7014, 701416 (2008).
[CrossRef]

S. L. Keil, T. Rimmele, C. U. Keller, F. Hill, R. R. Radick, J. M. Oschmann, M. Warner, N. E. Dalrymple, J. Briggs, S. Hegwer, and D. Ren, “Design and development of the Advanced Technology Solar Telescope (ATST),” Proc. SPIE 4853, 240–251 (2003).
[CrossRef]

M. Collados, “European Solar Telescope (EST): project status,” Proc. SPIE 7012, 70120J (2008).
[CrossRef]

Sol. Phys.

H. Socas-Navarro, D. F. Elmore, A. Pietarila, T. Darnell, B. W. Lites, S. Tomczyk, and S. Hegwer, “SPINOR: Visible and infrared spectro-polarimetry at the National Solar Observatory,” Sol. Phys. 235, 55–73 (2006).
[CrossRef]

J. O. Stenflo, “The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere,” Sol. Phys. 80, 209–226 (1982).
[CrossRef]

J. O. Stenflo, “Magnetic-field structure of the photospheric network,” Sol. Phys. 32, 41–63 (1973).
[CrossRef]

S. Tomczyk, G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. G. Judge, “An instrument to measure coronal emission line polarization,” Sol. Phys. 247, 411–428 (2008).
[CrossRef]

Y. Hanaoka, “Ferroelectric liquid crystal polarimeter for high-cadence Hα imaging polarimetry,” Sol. Phys. 222, 265–278(2004).
[CrossRef]

Technometrics

M. D. McKay, R. J. Beckman, and W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,” Technometrics 21, 239–245 (1979).
[CrossRef]

Other

D. Elmore, National Solar Observatory (private communication, 2008).

K. Sankarasubramanian, B. Lites, C. Gullixson, D. F. Elmore, S. Hegwer, K. V. Streander, T. Rimmele, S. Fletcher, S. Gregory, and M. Sigwarth, “The diffraction limited spectro-polarimeter,” in Solar Polarization 4, R.Casini and B.Lites, eds., ASP Conf. Ser. (2006), Vol. 358, pp. 201–204.

M. Collados, “High resolution spectropolarimetry and magnetography,” in 3rd Advances in Solar Physics Euroconference, B.Schmieder, A.Hoffman, and J.Staude, eds., ASP Conf. Ser. (1999), Vol. 184, pp. 3–22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Modulation efficiency curves for the four Stokes parameters between 400 and 1100 nm for modulators with two FLCs. Continuous curve: optimal and balanced solution at 630 nm (indicated by the central arrow) corresponding to the NSO/DLSP modulator [22]. Dotted curve: polychromatic solution corresponding to a simple modification of the NSO/DLSP modulator, where the first FLC is rotated by an additional angle of 67.5 ° . Dashed curve: polychromatic solution obtained from the former solution through the addition of a fixed quartz retarder between the two FLCs. This solution was optimized between 500 and 900 nm (indicated by the two outmost arrows). The horizontal solid lines in the four panels indicate the maximum theoretical modulation efficiencies that can be achieved simultaneously for the four Stokes parameters (1 for I, and 1 / 3 for Q, U, and V).

Fig. 2
Fig. 2

As Fig. 1, but now for a modulator consisting of a stack of three quartz retarders rotated over eight discrete steps of 22.5 ° . The modulator was optimized between 380 and 1600 nm (indicated by the two arrows).

Fig. 3
Fig. 3

As Fig. 2, but now for a modulator consisting of two LCVRs followed by a fixed quartz retarder, and using a six-state modulation scheme. The modulator was optimized between 450 and 1600 nm (indicated by the two arrows).

Fig. 4
Fig. 4

Theoretical efficiency curves for the ProMag modulator, consisting of two FLCs followed by a quartz retarder. The modulator was optimized at 587.6, 656.3, 769.9, and 1083.0 nm (indicated by arrows). The crosses indicate the measured efficiencies at 587.6 and 1083.0 nm after deployment of the instrument.

Fig. 5
Fig. 5

Theoretical modulation matrix of ProMag. The crosses indicate the measured modulation amplitudes at 587.6 and 1083.0 nm . The first column of the matrix is identically equal to 1 and is not shown.

Tables (1)

Tables Icon

Table 1 Examples of Optimal Modulation Schemes for One Wavelength, Based on Typical Retarding Devices a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( I , Q , U , V ) T ,
I = M S ,
S = D I ,
ϵ i = ( n j = 1 n D i j 2 ) 1 / 2 ,
σ i = 1 n σ I ϵ i ,

Metrics