Abstract

The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5μm wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5m collimated beam.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).
  2. R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
    [CrossRef]
  3. S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008).
    [CrossRef]
  4. S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
    [CrossRef]
  5. C. Roddier and F. Roddier, “Wavefront reconstruction from defocused images and the test of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993).
    [CrossRef]
  6. R. B. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656–660 (1971).
  7. H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
    [CrossRef]
  8. J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994).
    [CrossRef]
  9. S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994).
    [CrossRef] [PubMed]
  10. J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
    [CrossRef]
  11. D. Clark, W. Kindred, and J. T. Williams, “In-situ aluminization of the MMT 6.5m primary mirror,” Proc. SPIE 6273, 627305 (2006).
    [CrossRef]
  12. J. H. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).
    [CrossRef]
  13. H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
    [CrossRef]
  14. S. C. West, “Interferometric Hartmann wavefront sensing for active optics at the 6.5m conversion of the Multiple Mirror Telescope,” Appl. Opt. 41, 3781–3789 (2002).
    [CrossRef] [PubMed]
  15. H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004).
    [CrossRef]
  16. D. Malacara, Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley-Interscience, 1992), Table 13.2, p. 465.
  17. M. Miler, C. W. Slinger, and J. M. Heaton, “Off-axis holographic zone plates recorded and reconstructed by cylindrical wavefronts,” Opt. Acta 31, 745–758 (1984).
    [CrossRef]
  18. W. Zmeck and G.-Y. Shen, “Mirror alignment and/or figure sensing with surface mounted holographic elements,” U.S. patent 5,274,479 (23 December 1993).
  19. J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
    [CrossRef]
  20. R. V. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 251, 146–153 (1980).
    [CrossRef]
  21. B. A. McLeod, “Collimation of fast wide-field telescopes,” Pub. Astron. Soc. Pacific 108, 217–219 (1996).
    [CrossRef]
  22. R. N. Wilson and B. Delabre, “Concerning the alignment of modern telescopes: theory, practice, and tolerances illustrated by the ESO NTT,” Pub. Astron. Soc. Pacific 109, 53–60 (1997).
    [CrossRef]
  23. M. Tuell, “Novel tooling for production of aspheric surfaces,” M. S. thesis No. AAT 1410263 (University of Arizona, 2002).
  24. S. C. West, “Procedure for registering the boresight alignment fixture to the LOTIS Primary Mirror,” Technical memorandum 00081 (LOTCO, 2006).
  25. S. Qian, W. Jark, G. Sostero, A. Gambitta, F. Mazzolini, and A. Savoia, “Precise measuring method for detecting the in situ distortion profile of a high-heat-load mirror for synchrotron radiation by use of a pentaprism long trace profiler,” Appl. Opt. 36, 3769–3775 (1997).
    [CrossRef] [PubMed]
  26. P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
    [CrossRef]
  27. J. Yellowhair and J. H. Burge, “Analysis of a scanning pentaprism system for measurements of large flat mirrors,” Appl. Opt. 46, 8466–8474 (2007).
    [CrossRef] [PubMed]
  28. P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007).
    [CrossRef]

2009 (1)

S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
[CrossRef]

2008 (3)

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008).
[CrossRef]

P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
[CrossRef]

2007 (2)

J. Yellowhair and J. H. Burge, “Analysis of a scanning pentaprism system for measurements of large flat mirrors,” Appl. Opt. 46, 8466–8474 (2007).
[CrossRef] [PubMed]

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007).
[CrossRef]

2006 (1)

D. Clark, W. Kindred, and J. T. Williams, “In-situ aluminization of the MMT 6.5m primary mirror,” Proc. SPIE 6273, 627305 (2006).
[CrossRef]

2004 (1)

H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004).
[CrossRef]

2003 (1)

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

2002 (1)

1998 (2)

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

1997 (2)

1996 (1)

B. A. McLeod, “Collimation of fast wide-field telescopes,” Pub. Astron. Soc. Pacific 108, 217–219 (1996).
[CrossRef]

1995 (1)

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[CrossRef]

1994 (3)

J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994).
[CrossRef]

S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994).
[CrossRef] [PubMed]

J. H. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).
[CrossRef]

1993 (1)

1984 (1)

M. Miler, C. W. Slinger, and J. M. Heaton, “Off-axis holographic zone plates recorded and reconstructed by cylindrical wavefronts,” Opt. Acta 31, 745–758 (1984).
[CrossRef]

1980 (1)

R. V. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 251, 146–153 (1980).
[CrossRef]

1971 (1)

R. B. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656–660 (1971).

Allen, R. G.

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

Anderson, D.

J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994).
[CrossRef]

Angel, J. R. P.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Bailey, H.

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Baily, S. H.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

Bell, R.

S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008).
[CrossRef]

Bell, R. M.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Borota, S. A.

S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
[CrossRef]

Burge, J.

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Burge, J. H.

P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
[CrossRef]

J. Yellowhair and J. H. Burge, “Analysis of a scanning pentaprism system for measurements of large flat mirrors,” Appl. Opt. 46, 8466–8474 (2007).
[CrossRef] [PubMed]

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007).
[CrossRef]

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[CrossRef]

J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994).
[CrossRef]

J. H. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).
[CrossRef]

Callahan, S. P.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Ceurden, B.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

Clark, D.

D. Clark, W. Kindred, and J. T. Williams, “In-situ aluminization of the MMT 6.5m primary mirror,” Proc. SPIE 6273, 627305 (2006).
[CrossRef]

Cochrane, A.

S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008).
[CrossRef]

Cochrane, A. T.

S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
[CrossRef]

Cuerden, B.

P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
[CrossRef]

H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Cuzner, G.

S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
[CrossRef]

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Davison, W. B.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994).
[CrossRef] [PubMed]

Delabre, B.

R. N. Wilson and B. Delabre, “Concerning the alignment of modern telescopes: theory, practice, and tolerances illustrated by the ESO NTT,” Pub. Astron. Soc. Pacific 109, 53–60 (1997).
[CrossRef]

DeRigne, S. T.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994).
[CrossRef] [PubMed]

Dettmann, L. R.

H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004).
[CrossRef]

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Eugeni, C.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Gambitta, A.

Hagen, J.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

Heaton, J. M.

M. Miler, C. W. Slinger, and J. M. Heaton, “Off-axis holographic zone plates recorded and reconstructed by cylindrical wavefronts,” Opt. Acta 31, 745–758 (1984).
[CrossRef]

Hill, J. M.

H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004).
[CrossRef]

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Hille, B. B.

Hutchison, S. B.

S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008).
[CrossRef]

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Hutchison, Sheldon

S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
[CrossRef]

Jark, W.

Kenagy, K.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

Ketelsen, D. A.

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994).
[CrossRef]

Kindred, W.

D. Clark, W. Kindred, and J. T. Williams, “In-situ aluminization of the MMT 6.5m primary mirror,” Proc. SPIE 6273, 627305 (2006).
[CrossRef]

Li, L. H.

S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
[CrossRef]

Lutz, R. D.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley-Interscience, 1992), Table 13.2, p. 465.

Mallik, P. C. V.

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007).
[CrossRef]

Martin, H. M.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
[CrossRef]

H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004).
[CrossRef]

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994).
[CrossRef] [PubMed]

Mazzolini, F.

McCord, S.

S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008).
[CrossRef]

McLeod, B. A.

B. A. McLeod, “Collimation of fast wide-field telescopes,” Pub. Astron. Soc. Pacific 108, 217–219 (1996).
[CrossRef]

Miler, M.

M. Miler, C. W. Slinger, and J. M. Heaton, “Off-axis holographic zone plates recorded and reconstructed by cylindrical wavefronts,” Opt. Acta 31, 745–758 (1984).
[CrossRef]

Miller, S. M.

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

Miller, T.

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Nagel, R. H.

Olbert, B. H.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Platt, B. C.

R. B. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656–660 (1971).

Porodi, G.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Qian, S.

Robins, G. C.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Roddier, C.

Roddier, F.

Sasian, J.

P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
[CrossRef]

Sasian, J. M.

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

Savoia, A.

Shack, R. B.

R. B. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656–660 (1971).

Shack, R. V.

R. V. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 251, 146–153 (1980).
[CrossRef]

Shen, G.-Y.

W. Zmeck and G.-Y. Shen, “Mirror alignment and/or figure sensing with surface mounted holographic elements,” U.S. patent 5,274,479 (23 December 1993).

Slinger, C. W.

M. Miler, C. W. Slinger, and J. M. Heaton, “Off-axis holographic zone plates recorded and reconstructed by cylindrical wavefronts,” Opt. Acta 31, 745–758 (1984).
[CrossRef]

Sostero, G.

Strittmatter, P. A.

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

Su, P.

P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
[CrossRef]

Theil, D. S.

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Thompson, K.

R. V. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 251, 146–153 (1980).
[CrossRef]

Trebisky, T. J.

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994).
[CrossRef] [PubMed]

Tuell, M.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

M. Tuell, “Novel tooling for production of aspheric surfaces,” M. S. thesis No. AAT 1410263 (University of Arizona, 2002).

Ward, M.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

West, S.

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

West, S. C.

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

S. C. West, “Interferometric Hartmann wavefront sensing for active optics at the 6.5m conversion of the Multiple Mirror Telescope,” Appl. Opt. 41, 3781–3789 (2002).
[CrossRef] [PubMed]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

S. C. West, H. M. Martin, R. H. Nagel, R. S. Young, W. B. Davison, T. J. Trebisky, S. T. DeRigne, and B. B. Hille, “Practical design and performance of the stress-lap polishing tool,” Appl. Opt. 33, 8094–8100 (1994).
[CrossRef] [PubMed]

J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994).
[CrossRef]

S. C. West, “Procedure for registering the boresight alignment fixture to the LOTIS Primary Mirror,” Technical memorandum 00081 (LOTCO, 2006).

Williams, J. T.

D. Clark, W. Kindred, and J. T. Williams, “In-situ aluminization of the MMT 6.5m primary mirror,” Proc. SPIE 6273, 627305 (2006).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

Wilson, R. N.

R. N. Wilson and B. Delabre, “Concerning the alignment of modern telescopes: theory, practice, and tolerances illustrated by the ESO NTT,” Pub. Astron. Soc. Pacific 109, 53–60 (1997).
[CrossRef]

Yellowhair, J.

Young, R. S.

Zarifis, V. G.

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Zhao, C.

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007).
[CrossRef]

Zmeck, W.

W. Zmeck and G.-Y. Shen, “Mirror alignment and/or figure sensing with surface mounted holographic elements,” U.S. patent 5,274,479 (23 December 1993).

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

R. B. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 61, 656–660 (1971).

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

M. Miler, C. W. Slinger, and J. M. Heaton, “Off-axis holographic zone plates recorded and reconstructed by cylindrical wavefronts,” Opt. Acta 31, 745–758 (1984).
[CrossRef]

Opt. Eng. (1)

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng. 46, 023602 (2007).
[CrossRef]

Proc. SPIE (13)

R. M. Bell, G. C. Robins, C. Eugeni, G. Cuzner, S. B. Hutchison, S. H. Baily, B. Ceurden, J. Hagen, K. Kenagy, H. M. Martin, M. Tuell, M. Ward, and S. C. West, “LOTIS at completion of Collimator integration,” Proc. SPIE 7017, 70170D (2008).
[CrossRef]

S. B. Hutchison, A. Cochrane, S. McCord, and R. Bell, “Updated status and capabilities for the LOTIS 6.5 meter collimator,” Proc. SPIE 7106, 710618 (2008).
[CrossRef]

S. A. Borota, L. H. Li, G. Cuzner, Sheldon Hutchison, and A. T. Cochrane, “Atmospheric optical turbulence measurements in the LOTIS vacuum chamber and LOTIS Collimator jitter analysis results,” Proc. SPIE 7330, 733003 (2009).
[CrossRef]

H. M. Martin, R. G. Allen, J. H. Burge, L. R. Dettmann, D. A. Ketelsen, S. M. Miller, and J. M. Sasian, “Fabrication of mirrors for the Magellan telescopes and the Large Binocular Telescope,” Proc. SPIE 4837, 609–618 (2003).
[CrossRef]

J. H. Burge, D. Anderson, D. A. Ketelsen, and S. C. West, “Null test optics for the MMT and Magellan 6.5mf/1.25 primary mirrors,” Proc. SPIE 2199, 658–669 (1994).
[CrossRef]

H. M. Martin, B. Cuerden, L. R. Dettmann, and J. M. Hill, “Active optics and force optimization for the first 8.4m LBT mirror,” Proc. SPIE 5489, 826–837 (2004).
[CrossRef]

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[CrossRef]

R. V. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE 251, 146–153 (1980).
[CrossRef]

J. M. Hill, J. R. P. Angel, R. D. Lutz, B. H. Olbert, and P. A. Strittmatter, “Casting the first 8.4 meter borosilicate honeycomb mirror for the Large Binocular Telescope,” Proc. SPIE 3352, 172–181 (1998).
[CrossRef]

D. Clark, W. Kindred, and J. T. Williams, “In-situ aluminization of the MMT 6.5m primary mirror,” Proc. SPIE 6273, 627305 (2006).
[CrossRef]

J. H. Burge, “Certification of null correctors for primary mirrors,” Proc. SPIE 1994, 248–259 (1994).
[CrossRef]

H. M. Martin, S. P. Callahan, B. Cuerden, W. B. Davison, S. T. DeRigne, L. R. Dettmann, G. Porodi, T. J. Trebisky, S. C. West, and J. T. Williams, “Active supports and force optimization for the MMT primary mirror,” Proc. SPIE 3352, 412–423 (1998).
[CrossRef]

P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin, “Scanning pentaprism measurements of off-axis aspherics,” Proc. SPIE 7018, 70183T (2008).
[CrossRef]

Pub. Astron. Soc. Pacific (2)

B. A. McLeod, “Collimation of fast wide-field telescopes,” Pub. Astron. Soc. Pacific 108, 217–219 (1996).
[CrossRef]

R. N. Wilson and B. Delabre, “Concerning the alignment of modern telescopes: theory, practice, and tolerances illustrated by the ESO NTT,” Pub. Astron. Soc. Pacific 109, 53–60 (1997).
[CrossRef]

Other (5)

M. Tuell, “Novel tooling for production of aspheric surfaces,” M. S. thesis No. AAT 1410263 (University of Arizona, 2002).

S. C. West, “Procedure for registering the boresight alignment fixture to the LOTIS Primary Mirror,” Technical memorandum 00081 (LOTCO, 2006).

D. Malacara, Optical Shop Testing, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley-Interscience, 1992), Table 13.2, p. 465.

W. Zmeck and G.-Y. Shen, “Mirror alignment and/or figure sensing with surface mounted holographic elements,” U.S. patent 5,274,479 (23 December 1993).

G. C. Robins, R. M. Bell, C. Eugeni, D. S. Theil, T. Miller, G. Cuzner, S. B. Hutchison, V. G. Zarifis, H. Bailey, J. Burge, and S. West, “The Large Optical Test and Integration Site (LOTIS),” presented at the Aerospace Testing Seminar (Manhattan Beach, California, April 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic depiction of the LOTIS Collimator system. The components are described in the text.

Fig. 2
Fig. 2

LOTIS Collimator in the vacuum chamber at LMSSC Sunnyvale, California. Shown from front to back are the center-of-curvature interferometer system, the large x y flat mirror positioner, the pentaprism system and Collimator headring, and the 6.5 m primary mirror with its attached Hartmann system. Notice the two engineers in clean room attire along the right side.

Fig. 3
Fig. 3

Residual as-polished zenith-pointing primary mirror figure phase map with 23 Zernike polynomials removed (top) is 31 nm rms wavefront. The horizon-pointing residual mirror figure (40 Zernikes removed) measured in the Collimator is 40 nm rms wavefront (bottom). The silhouettes are the secondary mirror hub, support vanes, pentaprism rail system (which appear magnified due to the center-of-curvature perspective), and Hartmann mirrors bonded onto the primary mirror. Scale bars are nm wavefront, and x y units are in pixels in the phase image file and have no relationship to the Collimator scale.

Fig. 4
Fig. 4

(Color online) (Top) Concept of the Hartmann mirror system for measuring changes in the primary mirror shape. Thirty-six 100 mm mirrors are bonded to the primary mirror surface and are pointed at its focus. They are illuminated by a single-mode laser located at the focal plane that fills the secondary mirror. The reflected beams return to the secondary mirror and then back into the focal plane package where a beam splitter reflects them to a CCD camera (not shown). (Bottom) Image of the Hartmann spots formed on the focal plane detector. The large boxes are the areas where the computer expects to find each spot, and the small boxes are centered on the computer-determined centroid. The larger spot at the lower center is the pointing alignment spot described in Subsection 4B.

Fig. 5
Fig. 5

Horizon-pointing wavefront phase error map of the ULE secondary mirror supported in the Collimator cell is 46 nm rms . The three edge high points are from clamps used during ion polishing and are outside of the optical aperture. Scale bar unit is wavefront nm.

Fig. 6
Fig. 6

(Color online) Controlling Collimator pointing using a secondary mirror sphere and an alignment reticle to transfer the primary mirror axis to the focal plane detector. This arrangement controls field astigmatism by controlling absolute Collimator pointing. See Subsection 4B for more details.

Fig. 7
Fig. 7

Principal hexapod motions used to align the secondary mirror. The center-of-curvature rotation (top) corrects coma without affecting pointing. The zero-coma rotation (center) corrects pointing without changing coma. Piston along the optic axis (bottom) corrects power.

Fig. 8
Fig. 8

Concept for a single rail of the LOTIS pentaprism system. See Subsection 4C for an explanation.

Fig. 9
Fig. 9

Simulated measurements of the wavefront slope errors projected onto the scanning direction of the three LOTIS pentaprism rails versus 1 μm amplitude of power (Z3), astigmatism (Z4,5), coma (Z6,7), spherical aberration (Z8), and trefoil (Z9,10), Zernike wavefront errors. The rail geometry can only measure one mode of trefoil, but is designed to provide an excellent geometry for measurement of on-axis alignment wavefront errors and system astigmatism.

Fig. 10
Fig. 10

Measurement of the in-scan angle error produced by an absolute prism yaw angle error. The absolute yaw must be aligned to the beam projector axis to 0.2 mrad to keep the unwanted in-scan error coupling to 5 nrads .

Fig. 11
Fig. 11

Focal plane image during a pentaprism scan. The three stationary “A” prisms are used to correct pointing errors for the scanned “B” prisms. The large boxes are the regions of interest, where the computer expects to find each spot. The parallel lines are the allowed roll angle tolerances for each prism, which are set to ± 10 μrads .

Fig. 12
Fig. 12

Pentaprism scan taken directly after the secondary was positioned with the laser tracker during initial assembly of the Collimator (top) and the scan taken after two corrections of position using the pentaprism system and hexapod. Tables 5, 6 allow the conversion of these curves to wavefront error.

Fig. 13
Fig. 13

Residual errors measured in the pentaprism test (top) versus a simulation over the as-polished phase maps of the primary and secondary mirror figures (bottom). The phase maps are not phased to the measured data, but show that the measured residuals are consistent with those expected from high-frequency polishing slope errors on the optics.

Fig. 14
Fig. 14

Subaperture diameter versus average rms WFE for the initial wavefront tests of the LOTIS Collimator. The vacuum (bottom curve) and ambient air (top curve) goals are shown. The gray region identifies the measured Collimator wavefront error including the 1-sigma measurement uncertainty spread.

Fig. 15
Fig. 15

Nine-hour stability of Collimator power, coma and astigmatism were measured with the staring pentaprism system during operation in ambient air. No corrections were made the Collimator wavefront control systems during these tests. For reference, 28 nm rms of power corresponds to 1 μm secondary mirror piston, and 2 nm rms coma corresponds to 1 μrad of secondary mirror rotation about its center-of-curvature. Astigmatism and coma graphs show only one set of error bars to limit confusion.

Tables (11)

Tables Icon

Table 1 Active Wavefront Control Components of LOTIS Collimator a

Tables Icon

Table 2 System Wavefront Error Budget (nm rms) Versus System Subaperture Diameter

Tables Icon

Table 3 Wavefront Error Budget for Primary Mirror (nm rms) Versus System Subaperture Diameter

Tables Icon

Table 4 Wavefront Error Budget for Manufacture and Testing of Secondary Mirror Versus System Subaperture Diameter

Tables Icon

Table 5 Wavefront Error (nm rms) Corresponding to Control Actions of Secondary Positioner Shown in Fig. 7

Tables Icon

Table 6 Improvement in Secondary Position of Laser Tracker Alignment Compared to That after Two Alignment Corrections Using Scanning Pentaprism System Measurements to Change Secondary Position

Tables Icon

Table 7 Wavefront Error Alignment Budget Including Secondary Mirror Positioner Accuracy Versus System Subaperture Diameter

Tables Icon

Table 8 Summary of Analysis of Wavefront Error Contributions (nm rms) to Primary Mirror Figure and Secondary Alignment for Time > 78 h after Chamber Depressurization (Compared to Thermal Wavefront Error Budget) a

Tables Icon

Table 9 Average Subaperture WFE (nm rms) with and without Measurement Uncertainties Versus Component for First LOTIS Collimator Ambient Air Wavefront Correction Tests at LMSSC Facility

Tables Icon

Table 10 Commanded Secondary Motions and Astigmatic Bending of Primary Mirror Versus Wavefront Changes Measured with Both Scanning and Staring Pentaprism Systems a

Tables Icon

Table 11 Change in Hartmann Wavefront Fit Coefficient Expressed as Percentage of Commanded Primary Mirror Astigmatism and Trefoil Bending Averaged for Many Bends Measured during Collimator Setup

Metrics